Subversion Repositories seema-scanner

Rev

Rev 24 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
25 jakw 1
#include "SMTriangulator.h"
9 jakw 2
 
3
#include <QCoreApplication>
4
#include <QSettings>
5
 
6
#include <iostream>
7
#include <opencv2/opencv.hpp>
8
 
9
#include <pcl/filters/statistical_outlier_removal.h>
10
#include <pcl/io/pcd_io.h>
11
 
12
 
25 jakw 13
SMTriangulator::SMTriangulator(){
9 jakw 14
 
25 jakw 15
    // Precompute lens correction maps
16
    cv::Mat eye = cv::Mat::eye(3, 3, CV_32F);
17
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, eye, calibration.K0, cv::Size(calibration.frameWidth, calibration.frameHeight), CV_32FC1, lensMap1, lensMap2);
9 jakw 18
 
25 jakw 19
    //cv::Mat map1, map2;
20
    //cv::normalize(lensMap1, map1, 0, 255, cv::NORM_MINMAX, CV_8U);
21
    //cv::normalize(lensMap2, map2, 0, 255, cv::NORM_MINMAX, CV_8U);
22
    //cv::imwrite("map1.png", map1);
23
    //cv::imwrite("map2.png", map2);
9 jakw 24
}
25
 
25 jakw 26
void SMTriangulator::triangulatePointCloud(cv::Mat up, cv::Mat vp, cv::Mat mask, cv::Mat shading){
9 jakw 27
 
28
    time.start();
29
 
30
    // Reconstruct point cloud
31
    cv::Mat pointCloud;
32
    cv::Mat empty;
25 jakw 33
    triangulate(up, vp, mask, shading, pointCloud);
9 jakw 34
 
35
    std::vector<cv::Mat> xyz;
36
    cv::split(pointCloud, xyz);
37
//    emit imshow("x", xyz[0], 1400, 100);
38
//    emit imshow("y", xyz[1], 1400, 450);
39
//    emit imshow("z", xyz[2], 1400, 800);
40
 
41
    // Convert point cloud to PCL format
42
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr pointCloudPCL(new pcl::PointCloud<pcl::PointXYZRGB>);
43
 
44
    // Interprete as organized point cloud
45
    pointCloudPCL->width = pointCloud.cols;
46
    pointCloudPCL->height = pointCloud.rows;
47
    pointCloudPCL->is_dense = false;
48
 
49
    pointCloudPCL->points.resize(pointCloud.rows*pointCloud.cols);
50
 
51
    //    for(int col=0; col<pointCloud.cols; col++){
52
    //        for(int row=0; row<pointCloud.rows; row++){
53
    //            const cv::Vec3f pnt = pointCloud.at<cv::Vec3f>(row,col);
54
    //            unsigned char shade = shading.at<unsigned char>(row,col);
55
    //            pcl::PointXYZRGBRGB point;
56
    //            point.x = pnt[0]; point.y = pnt[1]; point.z = pnt[2];
57
    //            point.r = shade; point.g = shade; point.b = shade;
58
    //            pointCloudPCL->at(col, row) = point;
59
    //        }
60
    //    }
61
 
62
    // stack xyz data
63
    std::vector<cv::Mat> pointCloudChannels;
64
    pointCloudChannels.push_back(xyz[0]);
65
    pointCloudChannels.push_back(xyz[1]);
66
    pointCloudChannels.push_back(xyz[2]);
67
 
68
    // 4 byte padding
69
    pointCloudChannels.push_back(cv::Mat::zeros(pointCloud.size(), CV_32F));
70
 
71
    // triple uchar color information
72
    std::vector<cv::Mat> rgb;
73
    rgb.push_back(shading);
74
    rgb.push_back(shading);
75
    rgb.push_back(shading);
76
    rgb.push_back(cv::Mat::zeros(shading.size(), CV_8U));
77
 
78
    cv::Mat rgb8UC4;
79
    cv::merge(rgb, rgb8UC4);
80
 
81
    cv::Mat rgb32F(rgb8UC4.size(), CV_32F, rgb8UC4.data);
82
 
83
    pointCloudChannels.push_back(rgb32F);
84
 
85
    // 12 bytes padding
86
    pointCloudChannels.push_back(cv::Mat::zeros(pointCloud.size(), CV_32F));
87
    pointCloudChannels.push_back(cv::Mat::zeros(pointCloud.size(), CV_32F));
88
    pointCloudChannels.push_back(cv::Mat::zeros(pointCloud.size(), CV_32F));
89
 
90
    // merge channels
91
    cv::Mat pointCloudPadded;
92
    cv::merge(pointCloudChannels, pointCloudPadded);
93
 
94
    // memcpy everything
95
    memcpy(&pointCloudPCL->points[0], pointCloudPadded.data, pointCloudPadded.rows*pointCloudPadded.cols*sizeof(pcl::PointXYZRGB));
96
 
97
//    // filtering
98
//    pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> filter;
99
//    filter.setMeanK(5);
100
//    filter.setStddevMulThresh(1.0);
101
//    filter.setInputCloud(pointCloudPCL);
102
//    pcl::PointCloud<pcl::PointXYZRGB>::Ptr pointCloudFiltered(new pcl::PointCloud<pcl::PointXYZRGB>);
103
//    filter.filter(*pointCloudFiltered);
104
 
105
    // Emit result
106
    emit newPointCloud(pointCloudPCL);
107
 
24 jakw 108
    std::cout << "SMTriangulator: " << time.elapsed() << "ms" << std::endl;
9 jakw 109
 
110
    //emit finished();
111
}
112
 
24 jakw 113
void SMTriangulator::triangulate(cv::Mat &up, cv::Mat &vp, cv::Mat &mask, cv::Mat &shading, cv::Mat &pointCloud){
114
 
115
    // Undistort up, mask and shading
116
    if(!up.empty()){
117
        cv::Mat upUndistort;
118
        cv::remap(up, upUndistort, lensMap1, lensMap2, cv::INTER_LINEAR);
119
        up = upUndistort;
120
    }
121
    if(!vp.empty()){
122
        cv::Mat vpUndistort;
123
        cv::remap(vp, vpUndistort, lensMap1, lensMap2, cv::INTER_LINEAR);
124
        vp = vpUndistort;
125
    }
126
 
127
    cv::Mat maskUndistort, shadingUndistort;
128
    cv::remap(mask, maskUndistort, lensMap1, lensMap2, cv::INTER_LINEAR);
129
    cv::remap(shading, shadingUndistort, lensMap1, lensMap2, cv::INTER_LINEAR);
130
    mask = maskUndistort;
131
    shading = shadingUndistort;
132
 
133
    // Triangulate
134
    cv::Mat xyz;
135
    if(!up.empty() && vp.empty())
136
        triangulateFromUp(up, xyz);
137
    else if(!vp.empty() && up.empty())
138
        triangulateFromVp(vp, xyz);
139
    else if(!up.empty() && !vp.empty())
140
        triangulateFromUpVp(up, vp, xyz);
141
 
142
    // Merge and mask
143
    pointCloud = cv::Mat(up.size(), CV_32FC3, cv::Scalar(NAN, NAN, NAN));
144
    xyz.copyTo(pointCloud, mask);
145
 
146
}
147
 
148
void SMTriangulator::triangulateFromUp(cv::Mat &up, cv::Mat &xyz){
149
 
150
    // Solve for xyzw using determinant tensor
151
    cv::Mat C = determinantTensor;
152
    std::vector<cv::Mat> xyzw(4);
153
    for(unsigned int i=0; i<4; i++){
154
        xyzw[i].create(up.size(), CV_32F);
155
        xyzw[i] = C.at<float>(cv::Vec4i(i,0,1,0)) - C.at<float>(cv::Vec4i(i,2,1,0))*uc - C.at<float>(cv::Vec4i(i,0,2,0))*vc -
156
                C.at<float>(cv::Vec4i(i,0,1,2))*up + C.at<float>(cv::Vec4i(i,2,1,2))*up.mul(uc) + C.at<float>(cv::Vec4i(i,0,2,2))*up.mul(vc);
157
    }
158
 
159
    // Convert to non homogenous coordinates
160
    for(unsigned int i=0; i<3; i++)
161
        xyzw[i] /= xyzw[3];
162
 
163
    // Merge and mask
164
    cv::merge(std::vector<cv::Mat>(xyzw.begin(), xyzw.begin()+3), xyz);
165
 
166
}
167
 
168
void SMTriangulator::triangulateFromVp(cv::Mat &vp, cv::Mat &xyz){
169
 
170
    // Solve for xyzw using determinant tensor
171
    cv::Mat C = determinantTensor;
172
    std::vector<cv::Mat> xyzw(4);
173
    for(unsigned int i=0; i<4; i++){
174
        xyzw[i].create(vp.size(), CV_32F);
175
        xyzw[i] = C.at<float>(cv::Vec4i(i,0,1,1)) - C.at<float>(cv::Vec4i(i,2,1,1))*uc - C.at<float>(cv::Vec4i(i,0,2,1))*vc -
176
                C.at<float>(cv::Vec4i(i,0,1,2))*vp + C.at<float>(cv::Vec4i(i,2,1,2))*vp.mul(uc) + C.at<float>(cv::Vec4i(i,0,2,2))*vp.mul(vc);
177
    }
178
 
179
    // Convert to non homogenous coordinates
180
    for(unsigned int i=0; i<3; i++)
181
        xyzw[i] /= xyzw[3];
182
 
183
    // Merge and mask
184
    cv::merge(std::vector<cv::Mat>(xyzw.begin(), xyzw.begin()+3), xyz);
185
 
186
}
187
 
188
void SMTriangulator::triangulateFromUpVp(cv::Mat &up, cv::Mat &vp, cv::Mat &xyz){
189
 
25 jakw 190
//    std::cerr << "WARNING! NOT FULLY IMPLEMENTED!" << std::endl;
191
//    int N = up.rows * up.cols;
24 jakw 192
 
25 jakw 193
//    cv::Mat projPointsCam(2, N, CV_32F);
194
//    uc.reshape(0,1).copyTo(projPointsCam.row(0));
195
//    vc.reshape(0,1).copyTo(projPointsCam.row(1));
24 jakw 196
 
25 jakw 197
//    cv::Mat projPointsProj(2, N, CV_32F);
198
//    up.reshape(0,1).copyTo(projPointsProj.row(0));
199
//    vp.reshape(0,1).copyTo(projPointsProj.row(1));
24 jakw 200
 
25 jakw 201
//    cv::Mat Pc(3,4,CV_32F,cv::Scalar(0.0));
202
//    cv::Mat(calibration.Kc).copyTo(Pc(cv::Range(0,3), cv::Range(0,3)));
24 jakw 203
 
25 jakw 204
//    cv::Mat Pp(3,4,CV_32F), temp(3,4,CV_32F);
205
//    cv::Mat(calibration.Rp).copyTo(temp(cv::Range(0,3), cv::Range(0,3)));
206
//    cv::Mat(calibration.Tp).copyTo(temp(cv::Range(0,3), cv::Range(3,4)));
207
//    Pp = cv::Mat(calibration.Kp) * temp;
24 jakw 208
 
25 jakw 209
//    cv::Mat xyzw;
210
//    cv::triangulatePoints(Pc, Pp, projPointsCam, projPointsProj, xyzw);
24 jakw 211
 
25 jakw 212
//    xyz.create(3, N, CV_32F);
213
//    for(int i=0; i<N; i++){
214
//        xyz.at<float>(0,i) = xyzw.at<float>(0,i)/xyzw.at<float>(3,i);
215
//        xyz.at<float>(1,i) = xyzw.at<float>(1,i)/xyzw.at<float>(3,i);
216
//        xyz.at<float>(2,i) = xyzw.at<float>(2,i)/xyzw.at<float>(3,i);
217
//    }
24 jakw 218
 
25 jakw 219
//    xyz = xyz.t();
220
//    xyz = xyz.reshape(3, up.rows);
24 jakw 221
}
222
 
25 jakw 223
SMTriangulator::~SMTriangulator(){
9 jakw 224
 
25 jakw 225
    std::cout << "SMTriangulator deleted.\n" << std::flush;
9 jakw 226
}
24 jakw 227