Subversion Repositories seema-scanner

Rev

Rev 245 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 245 Rev 255
1
//
1
//
2
// Gray Code Structured Light
2
// Gray Code Structured Light
3
//
3
//
4
// This implementation closely follows Henrik Aanaes, "Lecture Notes on Computer Vision" (2014).
4
// This implementation closely follows Henrik Aanaes, "Lecture Notes on Computer Vision" (2014).
5
//
5
//
6
 
6
 
7
#include "AlgorithmGrayCode.h"
7
#include "AlgorithmGrayCode.h"
8
#include <cmath>
8
#include <cmath>
9
#include "cvtools.h"
9
#include "cvtools.h"
10
#include "algorithmtools.h"
10
#include "algorithmtools.h"
11
 
11
 
12
// Algorithm
12
// Algorithm
13
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
13
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
14
 
14
 
15
    Nbits = ceilf(log2f((float)screenCols)) - 1;
15
    Nbits = 6;
16
    N = 2 + Nbits*2;
16
    N = 2 + Nbits*2;
17
 
17
 
18
    // all on pattern
18
    // all on pattern
19
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
19
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
20
    patterns.push_back(allOn);
20
    patterns.push_back(allOn);
21
 
21
 
22
    // all off pattern
22
    // all off pattern
23
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
23
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
24
    patterns.push_back(allOff);
24
    patterns.push_back(allOff);
25
 
25
 
26
 
26
 
27
    // horizontally encoding patterns
27
    // horizontally encoding patterns
28
    for(unsigned int p=0; p<Nbits; p++){
28
    for(unsigned int p=0; p<Nbits; p++){
29
        cv::Mat pattern(1, screenCols, CV_8UC3);
29
        cv::Mat pattern(1, screenCols, CV_8UC3);
30
        cv::Mat patternInv(1, screenCols, CV_8UC3);
30
        cv::Mat patternInv(1, screenCols, CV_8UC3);
31
 
31
 
32
        for(unsigned int j=0; j<screenCols; j++){
32
        for(unsigned int j=0; j<screenCols; j++){
33
 
33
 
34
            unsigned int jGray = binaryToGray(j);
34
            unsigned int jGray = binaryToGray(j);
35
            // Amplitude of channels
35
            // Amplitude of channels
36
            int bit = (int)getBit(jGray, Nbits-p+1);
36
            int bit = (int)getBit(jGray, Nbits-p+1);
37
            pattern.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*bit,255.0*bit,255.0*bit);
37
            pattern.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*bit,255.0*bit,255.0*bit);
38
            int invBit = bit^1;
38
            int invBit = bit^1;
39
            patternInv.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*invBit,255.0*invBit,255.0*invBit);
39
            patternInv.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*invBit,255.0*invBit,255.0*invBit);
40
        }
40
        }
41
        patterns.push_back(pattern);
41
        patterns.push_back(pattern);
42
        patterns.push_back(patternInv);
42
        patterns.push_back(patternInv);
43
    }
43
    }
44
 
44
 
45
 
-
 
-
 
45
    std::cout << "N patterns" << patterns.size() << std::endl;
46
}
46
}
47
 
47
 
48
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
48
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
49
    return patterns[depth];
49
    return patterns[depth];
50
}
50
}
51
 
51
 
52
 
52
 
53
bool sortingLarger(cv::Vec4i i,cv::Vec4i j){ return (i[3]<j[3]);}
53
bool sortingLarger(cv::Vec4i i,cv::Vec4i j){ return (i[3]<j[3]);}
54
bool sortingEqual(cv::Vec4i i,cv::Vec4i j){ return (i[3]==j[3]);}
54
bool sortingEqual(cv::Vec4i i,cv::Vec4i j){ return (i[3]==j[3]);}
55
void getEdgeLabels(const cv::Mat& scanLine, int Nbits, std::vector<cv::Vec4i>& edges){
55
void getEdgeLabels(const cv::Mat& scanLine, int Nbits, std::vector<cv::Vec4i>& edges){
56
 
56
 
57
    int nCols = scanLine.cols;
57
    int nCols = scanLine.cols;
58
    const int *data = scanLine.ptr<const int>(0);
58
    const int *data = scanLine.ptr<const int>(0);
59
 
59
 
60
    int labelLeft;
60
    int labelLeft;
61
    int labelRight = data[0];
61
    int labelRight = data[0];
62
 
62
 
63
    // collect edges
63
    // collect edges
64
    for(int col=1; col<nCols; col++){
64
    for(int col=1; col<nCols; col++){
65
 
65
 
66
        labelLeft = labelRight;
66
        labelLeft = labelRight;
67
        labelRight = data[col];
67
        labelRight = data[col];
68
 
68
 
69
        // labels need to be non-background, and differ in exactly one bit
69
        // labels need to be non-background
-
 
70
        if(labelLeft != -1 && labelRight != -1) {
70
        if(labelLeft != -1 && labelRight != -1 && (grayToBinary(labelRight) == grayToBinary(labelLeft)+1)){
71
            unsigned int binLeft = grayToBinary(labelLeft);
-
 
72
            unsigned int binRight = grayToBinary(labelRight);
-
 
73
            // and differ in exactly one bit
-
 
74
            if (binRight + 1 == binLeft || binRight == binLeft + 1) {
71
            int orderingRelation = (labelLeft << Nbits) + labelRight;
75
                int orderingRelation = (labelLeft << Nbits) + labelRight;
72
            // store left label column
76
                // store left label column
73
            edges.push_back(cv::Vec4i(col-1, labelLeft, labelRight, orderingRelation));
77
                edges.push_back(cv::Vec4i(col-1, labelLeft, labelRight, orderingRelation));
-
 
78
            }
74
        }
79
        }
75
    }
80
    }
76
 
81
 
77
    // sort
82
    // sort
78
    std::sort(edges.begin(), edges.end(), sortingLarger);
83
    std::sort(edges.begin(), edges.end(), sortingLarger);
79
 
84
 
80
    // remove duplicates
85
    // remove duplicates
81
    std::vector<cv::Vec4i>::iterator it;
86
    std::vector<cv::Vec4i>::iterator it;
82
    it = std::unique(edges.begin(), edges.end(), sortingEqual);
87
    it = std::unique(edges.begin(), edges.end(), sortingEqual);
83
    edges.resize(std::distance(edges.begin(),it));
88
    edges.resize(std::distance(edges.begin(),it));
84
}
89
}
85
 
90
 
86
void AlgorithmGrayCode::get3DPoints(const SMCalibrationParameters &calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3f>& color){
91
void AlgorithmGrayCode::get3DPoints(const SMCalibrationParameters &calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3f>& color){
87
 
92
 
88
    assert(frames0.size() == N);
93
    assert(frames0.size() == N);
89
    assert(frames1.size() == N);
94
    assert(frames1.size() == N);
90
 
95
 
91
    int frameRows = frames0[0].rows;
96
    int frameRows = frames0[0].rows;
92
    int frameCols = frames0[0].cols;
97
    int frameCols = frames0[0].cols;
93
 
98
 
94
    // rectifying homographies (rotation+projections)
99
    // rectifying homographies (rotation+projections)
95
    cv::Size frameSize(frameCols, frameRows);
100
    cv::Size frameSize(frameCols, frameRows);
96
    cv::Mat R, T;
101
    cv::Mat R, T;
97
    // stereoRectify segfaults unless R is double precision
102
    // stereoRectify segfaults unless R is double precision
98
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
103
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
99
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
104
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
100
    cv::Mat R0, R1, P0, P1, QRect;
105
    cv::Mat R0, R1, P0, P1, QRect;
101
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
106
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
102
 
107
 
103
    // interpolation maps
108
    // interpolation maps
104
    cv::Mat map0X, map0Y, map1X, map1Y;
109
    cv::Mat map0X, map0Y, map1X, map1Y;
105
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
110
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
106
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
111
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
107
 
112
 
108
    // gray-scale and remap
113
    // gray-scale and remap
109
    std::vector<cv::Mat> frames0Rect(N);
114
    std::vector<cv::Mat> frames0Rect(N);
110
    std::vector<cv::Mat> frames1Rect(N);
115
    std::vector<cv::Mat> frames1Rect(N);
111
    for(unsigned int i=0; i<N; i++){
116
    for(unsigned int i=0; i<N; i++){
112
        cv::Mat temp;
117
        cv::Mat temp;
113
        cv::cvtColor(frames0[i], temp, CV_RGB2GRAY);
118
        cv::cvtColor(frames0[i], temp, CV_RGB2GRAY);
114
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
119
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
115
        cv::cvtColor(frames1[i], temp, CV_RGB2GRAY);
120
        cv::cvtColor(frames1[i], temp, CV_RGB2GRAY);
116
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
121
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
117
    }
122
    }
118
 
123
 
119
    #ifdef QT_DEBUG
-
 
120
        cvtools::writeMat(frames0Rect[0], "frames0Rect_0.mat", "frames0Rect_0");
-
 
121
        cvtools::writeMat(frames0[0], "frames0_0.mat", "frames0_0");
-
 
122
 
-
 
123
        cvtools::writeMat(frames0Rect[22], "frames0Rect_22.mat", "frames0Rect_22");
-
 
124
        cvtools::writeMat(frames0Rect[23], "frames0Rect_23.mat", "frames0Rect_23");
-
 
125
 
-
 
126
        cv::imwrite("frames0[0].png", frames0[0]);
-
 
127
        cv::imwrite("frames0Rect[0].png", frames0Rect[0]);
-
 
128
 
-
 
129
        cv::imwrite("frames1[0].png", frames1[0]);
-
 
130
        cv::imwrite("frames1Rect[0].png", frames1Rect[0]);
-
 
131
    #endif
-
 
132
 
-
 
133
    // color remap
124
    // color remap
134
    cv::Mat color0Rect, color1Rect;
125
    cv::Mat color0Rect, color1Rect;
135
    cv::remap(frames0[0], color0Rect, map0X, map0Y, CV_INTER_LINEAR);
126
    cv::remap(frames0[0], color0Rect, map0X, map0Y, CV_INTER_LINEAR);
136
    cv::remap(frames1[0], color1Rect, map1X, map1Y, CV_INTER_LINEAR);
127
    cv::remap(frames1[0], color1Rect, map1X, map1Y, CV_INTER_LINEAR);
137
 
128
 
138
    int frameRectRows = frames0Rect[0].rows;
129
    int frameRectRows = frames0Rect[0].rows;
139
    int frameRectCols = frames0Rect[0].cols;
130
    int frameRectCols = frames0Rect[0].cols;
140
 
131
 
141
    // occlusion masks
132
    // occlusion masks
142
    cv::Mat occlusion0Rect, occlusion1Rect;
133
    cv::Mat occlusion0Rect, occlusion1Rect;
143
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0Rect);
134
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0Rect);
144
    occlusion0Rect = (occlusion0Rect > 0.1) & (occlusion0Rect < 0.99);
135
    occlusion0Rect = (occlusion0Rect > 0.1) & (occlusion0Rect < 0.99);
145
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1Rect);
136
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1Rect);
146
    occlusion1Rect = (occlusion1Rect > 0.1) & (occlusion1Rect < 0.99);
137
    occlusion1Rect = (occlusion1Rect > 0.1) & (occlusion1Rect < 0.99);
147
 
138
 
148
    // erode occlusion masks
139
    // erode occlusion masks
149
    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(2,2));
140
    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(2,2));
150
    cv::erode(occlusion0Rect, occlusion0Rect, strel);
141
    cv::erode(occlusion0Rect, occlusion0Rect, strel);
151
    cv::erode(occlusion1Rect, occlusion1Rect, strel);
142
    cv::erode(occlusion1Rect, occlusion1Rect, strel);
152
 
143
 
153
//    // correct for projector inversion error
144
//    // correct for projector inversion error
154
//    cv::Mat W;
145
//    cv::Mat W;
155
//    cv::add(frames0Rect[0], frames0Rect[1], W, cv::noArray(), CV_32F);
146
//    cv::add(frames0Rect[0], frames0Rect[1], W, cv::noArray(), CV_32F);
156
//    for(int i=2; i<N; i+=2){
147
//    for(int i=2; i<N; i+=2){
157
//        cv::Mat S, E;
148
//        cv::Mat S, E;
158
//        cv::add(frames0Rect[i], frames0Rect[i+1], S, cv::noArray(), CV_32F);
149
//        cv::add(frames0Rect[i], frames0Rect[i+1], S, cv::noArray(), CV_32F);
159
//        cv::subtract(W, S, E, cv::noArray(), CV_32F);
150
//        cv::subtract(W, S, E, cv::noArray(), CV_32F);
160
//        E *= 0.5;
151
//        E *= 0.5;
161
//        cv::add(frames0Rect[i], E, frames0Rect[i], cv::noArray(), CV_16UC1);
152
//        cv::add(frames0Rect[i], E, frames0Rect[i], cv::noArray(), CV_16UC1);
162
//        cv::add(frames0Rect[i+1], E, frames0Rect[i+1], cv::noArray(), CV_16UC1);
153
//        cv::add(frames0Rect[i+1], E, frames0Rect[i+1], cv::noArray(), CV_16UC1);
163
//    }
154
//    }
164
 
155
 
165
//    // correct for texture modulation and ambient
156
//    // correct for texture modulation and ambient
166
//    cv::Mat A0 = frames0Rect[1];
157
//    cv::Mat A0 = frames0Rect[1];
167
//    cv::Mat M0 = frames0Rect[0]-frames0Rect[1];
158
//    cv::Mat M0 = frames0Rect[0]-frames0Rect[1];
168
//    cv::divide(256.0, M0, M0, CV_32F);
159
//    cv::divide(256.0, M0, M0, CV_32F);
169
//    cv::Mat A1 = frames1Rect[1];
160
//    cv::Mat A1 = frames1Rect[1];
170
//    cv::Mat M1 = frames1Rect[0]-frames1Rect[1];
161
//    cv::Mat M1 = frames1Rect[0]-frames1Rect[1];
171
//    cv::divide(256.0, M1, M1, CV_32F);
162
//    cv::divide(256.0, M1, M1, CV_32F);
172
 
163
 
173
//    for(int i=2; i<N; i++){
164
//    for(int i=2; i<N; i++){
174
//        cv::multiply(frames0Rect[i]-A0, M0, frames0Rect[i], 1.0, CV_8UC1);
165
//        cv::multiply(frames0Rect[i]-A0, M0, frames0Rect[i], 1.0, CV_8UC1);
175
//        cv::multiply(frames1Rect[i]-A1, M1, frames1Rect[i], 1.0, CV_8UC1);
166
//        cv::multiply(frames1Rect[i]-A1, M1, frames1Rect[i], 1.0, CV_8UC1);
176
//    }
167
//    }
177
 
168
 
178
    // decode patterns
169
    // decode patterns
179
    cv::Mat code0Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
170
    cv::Mat code0Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
180
    cv::Mat code1Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
171
    cv::Mat code1Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
181
 
172
 
182
    // into gray code
173
    // into gray code
183
    for(unsigned int i=0; i<Nbits; i++){
174
    for(unsigned int i=0; i<Nbits; i++){
184
        cv::Mat temp, bit0, bit1;
175
        cv::Mat temp, bit0, bit1;
185
 
176
 
186
        cv::compare(frames0Rect[i*2+2], frames0Rect[i*2+3], temp, cv::CMP_GT);
177
        cv::compare(frames0Rect[i*2+2], frames0Rect[i*2+3], temp, cv::CMP_GT);
187
        temp.convertTo(bit0, CV_32S, 1.0/255.0);
178
        temp.convertTo(bit0, CV_32S, 1.0/255.0);
188
        cv::add(code0Rect, bit0*twopowi(Nbits-i-1), code0Rect, cv::noArray(), CV_32S);
179
        cv::add(code0Rect, bit0*twopowi(Nbits-i-1), code0Rect, cv::noArray(), CV_32S);
189
 
180
 
190
        cv::compare(frames1Rect[i*2+2], frames1Rect[i*2+3], temp, cv::CMP_GT);
181
        cv::compare(frames1Rect[i*2+2], frames1Rect[i*2+3], temp, cv::CMP_GT);
191
        temp.convertTo(bit1, CV_32S, 1.0/255.0);
182
        temp.convertTo(bit1, CV_32S, 1.0/255.0);
192
        cv::add(code1Rect, bit1*twopowi(Nbits-i-1), code1Rect, cv::noArray(), CV_32S);
183
        cv::add(code1Rect, bit1*twopowi(Nbits-i-1), code1Rect, cv::noArray(), CV_32S);
193
    }
184
    }
194
 
185
 
-
 
186
 
195
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
187
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
196
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
188
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
197
 
189
 
198
 
190
 
199
    #ifdef QT_DEBUG
191
    #ifdef QT_DEBUG
200
        // convert to standard binary
192
        // convert to standard binary
201
        cv::Mat code0Binary(code0Rect.rows, code0Rect.cols, CV_32F);
193
        cv::Mat code0Binary(code0Rect.rows, code0Rect.cols, CV_32F);
202
        cv::Mat code1Binary(code1Rect.rows, code1Rect.cols, CV_32F);
194
        cv::Mat code1Binary(code1Rect.rows, code1Rect.cols, CV_32F);
203
        for(int r=0; r<frameRectRows; r++){
195
        for(int r=0; r<frameRectRows; r++){
204
            for(int c=0; c<frameRectCols; c++){
196
            for(int c=0; c<frameRectCols; c++){
205
                if(code0Rect.at<int>(r,c) != -1)
197
                if(code0Rect.at<int>(r,c) != -1)
206
                    code0Binary.at<float>(r,c) = grayToBinary(code0Rect.at<int>(r,c));
198
                    code0Binary.at<float>(r,c) = grayToBinary(code0Rect.at<int>(r,c));
207
                if(code1Rect.at<int>(r,c) != -1)
199
                if(code1Rect.at<int>(r,c) != -1)
208
                    code1Binary.at<float>(r,c) = grayToBinary(code1Rect.at<int>(r,c));
200
                    code1Binary.at<float>(r,c) = grayToBinary(code1Rect.at<int>(r,c));
209
            }
201
            }
210
        }
202
        }
211
 
203
 
212
        cvtools::writeMat(code0Binary, "code0Binary.mat", "code0Binary");
204
        cvtools::writeMat(code0Binary, "code0Binary.mat", "code0Binary");
213
        cvtools::writeMat(code1Binary, "code1Binary.mat", "code1Binary");
205
        cvtools::writeMat(code1Binary, "code1Binary.mat", "code1Binary");
214
    #endif
206
    #endif
215
 
207
 
216
//    // threshold on vertical discontinuities (due to imperfect rectification)
208
//    // threshold on vertical discontinuities (due to imperfect rectification)
217
//    cv::Mat edges0;
209
//    cv::Mat edges0;
218
//    cv::Sobel(code0Binary, edges0, -1, 0, 1, 5);
210
//    cv::Sobel(code0Binary, edges0, -1, 0, 1, 5);
219
//    occlusion0Rect = occlusion0Rect & (abs(edges0) < 50);
211
//    occlusion0Rect = occlusion0Rect & (abs(edges0) < 50);
220
 
212
 
221
//    cv::Mat edges1;
213
//    cv::Mat edges1;
222
//    cv::Sobel(code1Binary, edges1, -1, 0, 1, 5);
214
//    cv::Sobel(code1Binary, edges1, -1, 0, 1, 5);
223
//    occlusion1Rect = occlusion1Rect & (abs(edges1) < 50);
215
//    occlusion1Rect = occlusion1Rect & (abs(edges1) < 50);
224
 
216
 
225
 
217
 
226
    // set occluded pixels to -1
218
    // set occluded pixels to -1
227
    for(int r=0; r<frameRectRows; r++){
219
    for(int r=0; r<frameRectRows; r++){
228
        for(int c=0; c<frameRectCols; c++){
220
        for(int c=0; c<frameRectCols; c++){
229
            if(occlusion0Rect.at<unsigned char>(r,c) == 0)
221
            if(occlusion0Rect.at<unsigned char>(r,c) == 0)
230
                code0Rect.at<int>(r,c) = -1;
222
                code0Rect.at<int>(r,c) = -1;
231
            if(occlusion1Rect.at<unsigned char>(r,c) == 0)
223
            if(occlusion1Rect.at<unsigned char>(r,c) == 0)
232
                code1Rect.at<int>(r,c) = -1;
224
                code1Rect.at<int>(r,c) = -1;
233
        }
225
        }
234
    }
226
    }
235
 
227
 
-
 
228
 
-
 
229
#ifdef QT_DEBUG
-
 
230
    cv::imwrite("code0Rect.png", code0Rect);
-
 
231
    cv::imwrite("code1Rect.png", code1Rect);
-
 
232
#endif
-
 
233
 
236
    #ifdef QT_DEBUG
234
    #ifdef QT_DEBUG
237
        cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
235
        cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
238
        cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
236
        cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
239
    #endif
237
    #endif
240
 
238
 
241
    // matching
239
    // matching
242
    std::vector<cv::Vec2f> q0, q1;
240
    std::vector<cv::Vec2f> q0, q1;
243
    for(int row=0; row<frameRectRows; row++){
241
    for(int row=0; row<frameRectRows; row++){
244
 
242
 
245
        // edge data structure containing [floor(column), labelLeft, labelRight, orderingRelation]
243
        // edge data structure containing [floor(column), labelLeft, labelRight, orderingRelation]
246
        std::vector<cv::Vec4i> edges0, edges1;
244
        std::vector<cv::Vec4i> edges0, edges1;
247
 
245
 
248
        // sorted, unique edges
246
        // sorted, unique edges
249
        getEdgeLabels(code0Rect.row(row), Nbits, edges0);
247
        getEdgeLabels(code0Rect.row(row), Nbits, edges0);
250
        getEdgeLabels(code1Rect.row(row), Nbits, edges1);
248
        getEdgeLabels(code1Rect.row(row), Nbits, edges1);
251
 
249
 
252
        // match edges
250
        // match edges
253
        std::vector<cv::Vec4i> matchedEdges0, matchedEdges1;
251
        std::vector<cv::Vec4i> matchedEdges0, matchedEdges1;
254
        unsigned int i=0, j=0;
252
        unsigned int i=0, j=0;
255
        while(i<edges0.size() && j<edges1.size()){
253
        while(i<edges0.size() && j<edges1.size()){
256
 
254
 
257
            if(edges0[i][3] == edges1[j][3]){
255
            if(edges0[i][3] == edges1[j][3]){
258
                matchedEdges0.push_back(edges0[i]);
256
                matchedEdges0.push_back(edges0[i]);
259
                matchedEdges1.push_back(edges1[j]);
257
                matchedEdges1.push_back(edges1[j]);
260
                i += 1;
258
                i += 1;
261
                j += 1;
259
                j += 1;
262
            } else if(edges0[i][3] < edges1[j][3]){
260
            } else if(edges0[i][3] < edges1[j][3]){
263
                i += 1;
261
                i += 1;
264
            } else if(edges0[i][3] > edges1[j][3]){
262
            } else if(edges0[i][3] > edges1[j][3]){
265
                j += 1;
263
                j += 1;
266
            }
264
            }
267
        }
265
        }
268
 
266
 
269
        // crude subpixel refinement
267
        // crude subpixel refinement
270
        // finds the intersection of linear interpolants in the positive/negative pattern
268
        // finds the intersection of linear interpolants in the positive/negative pattern
271
        for(unsigned int i=0; i<matchedEdges0.size(); i++){
269
        for(unsigned int i=0; i<matchedEdges0.size(); i++){
272
 
270
 
273
            int level = Nbits - leastSignificantBitSet(matchedEdges0[i][1]^matchedEdges0[i][2]);
271
            int level = Nbits - leastSignificantBitSet(matchedEdges0[i][1]^matchedEdges0[i][2]);
274
 
272
 
275
            // refine for camera 0
273
            // refine for camera 0
276
            float c0 = matchedEdges0[i][0];
274
            float c0 = matchedEdges0[i][0];
277
            float c1 = c0+1;
275
            float c1 = c0+1;
278
 
276
 
279
            float pos0 = frames0Rect[2*level+2].at<float>(row, c0);
277
            float pos0 = frames0Rect[2*level+2].at<float>(row, c0);
280
            float pos1 = frames0Rect[2*level+2].at<float>(row, c1);
278
            float pos1 = frames0Rect[2*level+2].at<float>(row, c1);
281
            float neg0 = frames0Rect[2*level+3].at<float>(row, c0);
279
            float neg0 = frames0Rect[2*level+3].at<float>(row, c0);
282
            float neg1 = frames0Rect[2*level+3].at<float>(row, c1);
280
            float neg1 = frames0Rect[2*level+3].at<float>(row, c1);
283
 
281
 
284
            float col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
282
            float col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
285
            q0.push_back(cv::Point2f(col, row));
283
            q0.push_back(cv::Point2f(col, row));
286
 
284
 
287
            // refine for camera 1
285
            // refine for camera 1
288
            c0 = matchedEdges1[i][0];
286
            c0 = matchedEdges1[i][0];
289
            c1 = c0+1;
287
            c1 = c0+1;
290
 
288
 
291
            pos0 = frames1Rect[2*level+2].at<float>(row, c0);
289
            pos0 = frames1Rect[2*level+2].at<float>(row, c0);
292
            pos1 = frames1Rect[2*level+2].at<float>(row, c1);
290
            pos1 = frames1Rect[2*level+2].at<float>(row, c1);
293
            neg0 = frames1Rect[2*level+3].at<float>(row, c0);
291
            neg0 = frames1Rect[2*level+3].at<float>(row, c0);
294
            neg1 = frames1Rect[2*level+3].at<float>(row, c1);
292
            neg1 = frames1Rect[2*level+3].at<float>(row, c1);
295
 
293
 
296
            col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
294
            col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
297
            q1.push_back(cv::Point2f(col, row));
295
            q1.push_back(cv::Point2f(col, row));
298
 
296
 
299
        }
297
        }
300
 
298
 
301
    }
299
    }
302
 
300
 
303
    int nMatches = q0.size();
301
    int nMatches = q0.size();
304
 
302
 
305
    if(nMatches < 1){
303
    if(nMatches < 1){
306
        Q.resize(0);
304
        Q.resize(0);
307
        color.resize(0);
305
        color.resize(0);
308
 
306
 
309
        return;
307
        return;
310
    }
308
    }
311
 
309
 
312
    // retrieve color information (at integer coordinates)
310
    // retrieve color information (at integer coordinates)
313
    color.resize(nMatches);
311
    color.resize(nMatches);
314
    for(int i=0; i<nMatches; i++){
312
    for(int i=0; i<nMatches; i++){
315
 
313
 
316
        cv::Vec3f c0 = color0Rect.at<cv::Vec3f>(q0[i][1], q0[i][0]);
314
        cv::Vec3f c0 = color0Rect.at<cv::Vec3f>(q0[i][1], q0[i][0]);
317
        cv::Vec3f c1 = color1Rect.at<cv::Vec3f>(q1[i][1], q1[i][0]);
315
        cv::Vec3f c1 = color1Rect.at<cv::Vec3f>(q1[i][1], q1[i][0]);
318
 
316
 
319
        color[i] = 0.5*c0 + 0.5*c1;
317
        color[i] = 0.5*c0 + 0.5*c1;
320
    }
318
    }
321
 
319
 
322
    // Triangulate by means of disparity projection
320
    // Triangulate by means of disparity projection
323
    Q.resize(q0.size());
321
    Q.resize(q0.size());
324
    cv::Matx44f QRectx = cv::Matx44f(QRect);
322
    cv::Matx44f QRectx = cv::Matx44f(QRect);
325
    cv::Matx33f R0invx = cv::Matx33f(cv::Mat(R0.t()));
323
    cv::Matx33f R0invx = cv::Matx33f(cv::Mat(R0.t()));
326
 
324
 
327
    #pragma omp parallel for
325
    #pragma omp parallel for
328
    for(unsigned int i=0; i<q0.size(); i++){
326
    for(unsigned int i=0; i<q0.size(); i++){
329
        float disparity = q0[i][0]-q1[i][0];
327
        float disparity = q0[i][0]-q1[i][0];
330
        cv::Vec4f Qih = QRectx*cv::Vec4f(q0[i][0], q0[i][1], disparity, 1.0);
328
        cv::Vec4f Qih = QRectx*cv::Vec4f(q0[i][0], q0[i][1], disparity, 1.0);
331
        float winv = float(1.0)/Qih[3];
329
        float winv = float(1.0)/Qih[3];
332
        Q[i] = R0invx * cv::Point3f(Qih[0]*winv, Qih[1]*winv, Qih[2]*winv);
330
        Q[i] = R0invx * cv::Point3f(Qih[0]*winv, Qih[1]*winv, Qih[2]*winv);
333
    }
331
    }
334
 
332
 
335
}
333
}
336
 
334