Subversion Repositories seema-scanner

Rev

Rev 231 | Rev 245 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
182 jakw 1
//
2
// Gray Code Structured Light
3
//
4
// This implementation closely follows Henrik Aanaes, "Lecture Notes on Computer Vision" (2014).
5
//
6
 
41 jakw 7
#include "AlgorithmGrayCode.h"
4 jakw 8
#include <cmath>
42 jakw 9
#include "cvtools.h"
182 jakw 10
#include "algorithmtools.h"
4 jakw 11
 
36 jakw 12
// Algorithm
70 jakw 13
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
4 jakw 14
 
133 jakw 15
    Nbits = ceilf(log2f((float)screenCols)) - 1;
42 jakw 16
    N = 2 + Nbits*2;
41 jakw 17
 
18
    // all on pattern
42 jakw 19
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
20
    patterns.push_back(allOn);
41 jakw 21
 
22
    // all off pattern
42 jakw 23
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
24
    patterns.push_back(allOff);
41 jakw 25
 
4 jakw 26
 
42 jakw 27
    // horizontally encoding patterns
28
    for(unsigned int p=0; p<Nbits; p++){
29
        cv::Mat pattern(1, screenCols, CV_8UC3);
30
        cv::Mat patternInv(1, screenCols, CV_8UC3);
4 jakw 31
 
42 jakw 32
        for(unsigned int j=0; j<screenCols; j++){
4 jakw 33
 
42 jakw 34
            unsigned int jGray = binaryToGray(j);
35
            // Amplitude of channels
133 jakw 36
            int bit = (int)getBit(jGray, Nbits-p+1);
42 jakw 37
            pattern.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*bit,255.0*bit,255.0*bit);
38
            int invBit = bit^1;
39
            patternInv.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*invBit,255.0*invBit,255.0*invBit);
4 jakw 40
        }
42 jakw 41
        patterns.push_back(pattern);
42
        patterns.push_back(patternInv);
4 jakw 43
    }
42 jakw 44
 
45
 
4 jakw 46
}
47
 
36 jakw 48
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
4 jakw 49
    return patterns[depth];
50
}
51
 
52
 
47 jakw 53
bool sortingLarger(cv::Vec4i i,cv::Vec4i j){ return (i[3]<j[3]);}
54
bool sortingEqual(cv::Vec4i i,cv::Vec4i j){ return (i[3]==j[3]);}
55
void getEdgeLabels(const cv::Mat& scanLine, int Nbits, std::vector<cv::Vec4i>& edges){
4 jakw 56
 
41 jakw 57
    int nCols = scanLine.cols;
45 jakw 58
    const int *data = scanLine.ptr<const int>(0);
41 jakw 59
 
45 jakw 60
    int labelLeft;
61
    int labelRight = data[0];
41 jakw 62
 
43 jakw 63
    // collect edges
42 jakw 64
    for(int col=1; col<nCols; col++){
41 jakw 65
 
42 jakw 66
        labelLeft = labelRight;
67
        labelRight = data[col];
68
 
95 jakw 69
        // labels need to be non-background, and differ in exactly one bit
122 jakw 70
        if(labelLeft != -1 && labelRight != -1 && (grayToBinary(labelRight) == grayToBinary(labelLeft)+1)){
43 jakw 71
            int orderingRelation = (labelLeft << Nbits) + labelRight;
47 jakw 72
            // store left label column
73
            edges.push_back(cv::Vec4i(col-1, labelLeft, labelRight, orderingRelation));
41 jakw 74
        }
75
    }
76
 
42 jakw 77
    // sort
41 jakw 78
    std::sort(edges.begin(), edges.end(), sortingLarger);
42 jakw 79
 
80
    // remove duplicates
47 jakw 81
    std::vector<cv::Vec4i>::iterator it;
42 jakw 82
    it = std::unique(edges.begin(), edges.end(), sortingEqual);
83
    edges.resize(std::distance(edges.begin(),it));
4 jakw 84
}
85
 
207 flgw 86
void AlgorithmGrayCode::get3DPoints(const SMCalibrationParameters &calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
4 jakw 87
 
41 jakw 88
    assert(frames0.size() == N);
89
    assert(frames1.size() == N);
4 jakw 90
 
42 jakw 91
    int frameRows = frames0[0].rows;
92
    int frameCols = frames0[0].cols;
93
 
94
    // rectifying homographies (rotation+projections)
95
    cv::Size frameSize(frameCols, frameRows);
96
    cv::Mat R, T;
97
    // stereoRectify segfaults unless R is double precision
98
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
99
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
100
    cv::Mat R0, R1, P0, P1, QRect;
101
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
102
 
41 jakw 103
    // interpolation maps
104
    cv::Mat map0X, map0Y, map1X, map1Y;
42 jakw 105
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
106
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
41 jakw 107
 
43 jakw 108
    // gray-scale and remap
109
    std::vector<cv::Mat> frames0Rect(N);
110
    std::vector<cv::Mat> frames1Rect(N);
167 jakw 111
    for(unsigned int i=0; i<N; i++){
43 jakw 112
        cv::Mat temp;
113 jakw 113
        cv::cvtColor(frames0[i], temp, CV_BayerBG2GRAY);
114 jakw 114
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
113 jakw 115
        cv::cvtColor(frames1[i], temp, CV_BayerBG2GRAY);
114 jakw 116
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
43 jakw 117
    }
41 jakw 118
 
236 jakw 119
    #ifdef SM_DEBUG
120
        cvtools::writeMat(frames0Rect[0], "frames0Rect_0.mat", "frames0Rect_0");
121
        cvtools::writeMat(frames0[0], "frames0_0.mat", "frames0_0");
120 jakw 122
 
236 jakw 123
        cvtools::writeMat(frames0Rect[22], "frames0Rect_22.mat", "frames0Rect_22");
124
        cvtools::writeMat(frames0Rect[23], "frames0Rect_23.mat", "frames0Rect_23");
68 jakw 125
 
236 jakw 126
        cv::imwrite("frames0[0].png", frames0[0]);
127
        cv::imwrite("frames0Rect[0].png", frames0Rect[0]);
78 jakw 128
 
236 jakw 129
        cv::imwrite("frames1[0].png", frames1[0]);
130
        cv::imwrite("frames1Rect[0].png", frames1Rect[0]);
131
    #endif
68 jakw 132
 
113 jakw 133
    // color debayer and remap
43 jakw 134
    cv::Mat color0Rect, color1Rect;
121 jakw 135
    cv::cvtColor(frames0[0], color0Rect, CV_BayerBG2RGB);
120 jakw 136
    cv::remap(color0Rect, color0Rect, map0X, map0Y, CV_INTER_LINEAR);
41 jakw 137
 
121 jakw 138
    cv::cvtColor(frames1[0], color1Rect, CV_BayerBG2RGB);
120 jakw 139
    cv::remap(color1Rect, color1Rect, map1X, map1Y, CV_INTER_LINEAR);
140
 
43 jakw 141
    int frameRectRows = frames0Rect[0].rows;
142
    int frameRectCols = frames0Rect[0].cols;
42 jakw 143
 
47 jakw 144
    // occlusion masks
43 jakw 145
    cv::Mat occlusion0Rect, occlusion1Rect;
146
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0Rect);
133 jakw 147
    occlusion0Rect = (occlusion0Rect > 10) & (occlusion0Rect < 250);
43 jakw 148
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1Rect);
133 jakw 149
    occlusion1Rect = (occlusion1Rect > 10) & (occlusion1Rect < 250);
47 jakw 150
 
151
    // erode occlusion masks
114 jakw 152
    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(2,2));
47 jakw 153
    cv::erode(occlusion0Rect, occlusion0Rect, strel);
154
    cv::erode(occlusion1Rect, occlusion1Rect, strel);
155
 
120 jakw 156
//    // correct for projector inversion error
157
//    cv::Mat W;
158
//    cv::add(frames0Rect[0], frames0Rect[1], W, cv::noArray(), CV_32F);
159
//    for(int i=2; i<N; i+=2){
160
//        cv::Mat S, E;
161
//        cv::add(frames0Rect[i], frames0Rect[i+1], S, cv::noArray(), CV_32F);
162
//        cv::subtract(W, S, E, cv::noArray(), CV_32F);
163
//        E *= 0.5;
164
//        cv::add(frames0Rect[i], E, frames0Rect[i], cv::noArray(), CV_16UC1);
165
//        cv::add(frames0Rect[i+1], E, frames0Rect[i+1], cv::noArray(), CV_16UC1);
166
//    }
167
 
133 jakw 168
//    // correct for texture modulation and ambient
169
//    cv::Mat A0 = frames0Rect[1];
170
//    cv::Mat M0 = frames0Rect[0]-frames0Rect[1];
171
//    cv::divide(256.0, M0, M0, CV_32F);
172
//    cv::Mat A1 = frames1Rect[1];
173
//    cv::Mat M1 = frames1Rect[0]-frames1Rect[1];
174
//    cv::divide(256.0, M1, M1, CV_32F);
120 jakw 175
 
133 jakw 176
//    for(int i=2; i<N; i++){
177
//        cv::multiply(frames0Rect[i]-A0, M0, frames0Rect[i], 1.0, CV_8UC1);
178
//        cv::multiply(frames1Rect[i]-A1, M1, frames1Rect[i], 1.0, CV_8UC1);
179
//    }
120 jakw 180
 
43 jakw 181
    // decode patterns
78 jakw 182
    cv::Mat code0Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
183
    cv::Mat code1Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
43 jakw 184
 
45 jakw 185
    // into gray code
167 jakw 186
    for(unsigned int i=0; i<Nbits; i++){
120 jakw 187
        cv::Mat temp, bit0, bit1;
188
 
189
        cv::compare(frames0Rect[i*2+2], frames0Rect[i*2+3], temp, cv::CMP_GT);
190
        temp.convertTo(bit0, CV_32S, 1.0/255.0);
191
        cv::add(code0Rect, bit0*twopowi(Nbits-i-1), code0Rect, cv::noArray(), CV_32S);
192
 
193
        cv::compare(frames1Rect[i*2+2], frames1Rect[i*2+3], temp, cv::CMP_GT);
194
        temp.convertTo(bit1, CV_32S, 1.0/255.0);
195
        cv::add(code1Rect, bit1*twopowi(Nbits-i-1), code1Rect, cv::noArray(), CV_32S);
43 jakw 196
    }
197
 
121 jakw 198
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
199
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
43 jakw 200
 
78 jakw 201
 
236 jakw 202
    #ifdef SM_DEBUG
203
        // convert to standard binary
204
        cv::Mat code0Binary(code0Rect.rows, code0Rect.cols, CV_32F);
205
        cv::Mat code1Binary(code1Rect.rows, code1Rect.cols, CV_32F);
206
        for(int r=0; r<frameRectRows; r++){
207
            for(int c=0; c<frameRectCols; c++){
208
                if(code0Rect.at<int>(r,c) != -1)
209
                    code0Binary.at<float>(r,c) = grayToBinary(code0Rect.at<int>(r,c));
210
                if(code1Rect.at<int>(r,c) != -1)
211
                    code1Binary.at<float>(r,c) = grayToBinary(code1Rect.at<int>(r,c));
212
            }
213
        }
45 jakw 214
 
236 jakw 215
        cvtools::writeMat(code0Binary, "code0Binary.mat", "code0Binary");
216
        cvtools::writeMat(code1Binary, "code1Binary.mat", "code1Binary");
217
    #endif
45 jakw 218
 
78 jakw 219
//    // threshold on vertical discontinuities (due to imperfect rectification)
220
//    cv::Mat edges0;
221
//    cv::Sobel(code0Binary, edges0, -1, 0, 1, 5);
222
//    occlusion0Rect = occlusion0Rect & (abs(edges0) < 50);
223
 
224
//    cv::Mat edges1;
225
//    cv::Sobel(code1Binary, edges1, -1, 0, 1, 5);
226
//    occlusion1Rect = occlusion1Rect & (abs(edges1) < 50);
227
 
228
 
229
    // set occluded pixels to -1
230
    for(int r=0; r<frameRectRows; r++){
231
        for(int c=0; c<frameRectCols; c++){
120 jakw 232
            if(occlusion0Rect.at<unsigned char>(r,c) == 0)
233
                code0Rect.at<int>(r,c) = -1;
234
            if(occlusion1Rect.at<unsigned char>(r,c) == 0)
235
                code1Rect.at<int>(r,c) = -1;
78 jakw 236
        }
237
    }
238
 
236 jakw 239
    #ifdef SM_DEBUG
240
        cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
241
        cvtools::writeMat*/(code1Rect, "code1Rect.mat", "code1Rect");
242
    #endif
120 jakw 243
 
41 jakw 244
    // matching
236 jakw 245
    std::vector<cv::Vec2f> q0, q1;
43 jakw 246
    for(int row=0; row<frameRectRows; row++){
41 jakw 247
 
95 jakw 248
        // edge data structure containing [floor(column), labelLeft, labelRight, orderingRelation]
47 jakw 249
        std::vector<cv::Vec4i> edges0, edges1;
41 jakw 250
 
43 jakw 251
        // sorted, unique edges
42 jakw 252
        getEdgeLabels(code0Rect.row(row), Nbits, edges0);
253
        getEdgeLabels(code1Rect.row(row), Nbits, edges1);
41 jakw 254
 
47 jakw 255
        // match edges
256
        std::vector<cv::Vec4i> matchedEdges0, matchedEdges1;
167 jakw 257
        unsigned int i=0, j=0;
41 jakw 258
        while(i<edges0.size() && j<edges1.size()){
259
 
260
            if(edges0[i][3] == edges1[j][3]){
47 jakw 261
                matchedEdges0.push_back(edges0[i]);
262
                matchedEdges1.push_back(edges1[j]);
41 jakw 263
                i += 1;
264
                j += 1;
42 jakw 265
            } else if(edges0[i][3] < edges1[j][3]){
41 jakw 266
                i += 1;
42 jakw 267
            } else if(edges0[i][3] > edges1[j][3]){
41 jakw 268
                j += 1;
269
            }
270
        }
271
 
47 jakw 272
        // crude subpixel refinement
273
        // finds the intersection of linear interpolants in the positive/negative pattern
167 jakw 274
        for(unsigned int i=0; i<matchedEdges0.size(); i++){
41 jakw 275
 
47 jakw 276
            int level = Nbits - leastSignificantBitSet(matchedEdges0[i][1]^matchedEdges0[i][2]);
277
 
278
            // refine for camera 0
279
            float c0 = matchedEdges0[i][0];
280
            float c1 = c0+1;
281
 
121 jakw 282
            float pos0 = frames0Rect[2*level+2].at<unsigned char>(row, c0);
283
            float pos1 = frames0Rect[2*level+2].at<unsigned char>(row, c1);
284
            float neg0 = frames0Rect[2*level+3].at<unsigned char>(row, c0);
285
            float neg1 = frames0Rect[2*level+3].at<unsigned char>(row, c1);
47 jakw 286
 
287
            float col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
236 jakw 288
            q0.push_back(cv::Point2f(col, row));
47 jakw 289
 
290
            // refine for camera 1
291
            c0 = matchedEdges1[i][0];
292
            c1 = c0+1;
293
 
121 jakw 294
            pos0 = frames1Rect[2*level+2].at<unsigned char>(row, c0);
295
            pos1 = frames1Rect[2*level+2].at<unsigned char>(row, c1);
296
            neg0 = frames1Rect[2*level+3].at<unsigned char>(row, c0);
297
            neg1 = frames1Rect[2*level+3].at<unsigned char>(row, c1);
47 jakw 298
 
299
            col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
236 jakw 300
            q1.push_back(cv::Point2f(col, row));
47 jakw 301
 
302
        }
303
 
41 jakw 304
    }
305
 
236 jakw 306
    int nMatches = q0.size();
63 jakw 307
 
308
    if(nMatches < 1){
309
        Q.resize(0);
310
        color.resize(0);
311
 
312
        return;
313
    }
314
 
95 jakw 315
    // retrieve color information (at integer coordinates)
41 jakw 316
    color.resize(nMatches);
317
    for(int i=0; i<nMatches; i++){
318
 
236 jakw 319
        cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0[i][1], q0[i][0]);
320
        cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1[i][1], q1[i][0]);
41 jakw 321
 
44 jakw 322
        color[i] = 0.5*c0 + 0.5*c1;
41 jakw 323
    }
324
 
231 jakw 325
    // Triangulate by means of disparity projection
236 jakw 326
    Q.resize(q0.size());
231 jakw 327
    cv::Matx44f QRectx = cv::Matx44f(QRect);
328
    cv::Matx33f R0invx = cv::Matx33f(cv::Mat(R0.t()));
329
 
330
    #pragma omp parallel for
236 jakw 331
    for(unsigned int i=0; i<q0.size(); i++){
332
        float disparity = q0[i][0]-q1[i][0];
333
        cv::Vec4f Qih = QRectx*cv::Vec4f(q0[i][0], q0[i][1], disparity, 1.0);
231 jakw 334
        float winv = float(1.0)/Qih[3];
335
        Q[i] = R0invx * cv::Point3f(Qih[0]*winv, Qih[1]*winv, Qih[2]*winv);
336
    }
337
 
4 jakw 338
}