Subversion Repositories seema-scanner

Rev

Rev 69 | Rev 78 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
41 jakw 1
#include "AlgorithmGrayCode.h"
4 jakw 2
#include <cmath>
42 jakw 3
#include "cvtools.h"
4 jakw 4
 
5
#ifndef log2f
6
#define log2f(x) (log(x)/log(2.0))
7
#endif
8
 
41 jakw 9
//using namespace std;
4 jakw 10
 
11
/*
12
 * The purpose of this function is to convert an unsigned
13
 * binary number to reflected binary Gray code.
14
 *
15
 * The operator >> is shift right. The operator ^ is exclusive or.
16
 * Source: http://en.wikipedia.org/wiki/Gray_code
17
 */
18
static unsigned int binaryToGray(unsigned int num) {
19
    return (num >> 1) ^ num;
20
}
21
 
22
/*
23
 * From Wikipedia: http://en.wikipedia.org/wiki/Gray_code
24
 * The purpose of this function is to convert a reflected binary
25
 * Gray code number to a binary number.
26
 */
45 jakw 27
static unsigned int grayToBinary(unsigned int num){
28
    unsigned int mask;
29
    for(mask = num >> 1; mask != 0; mask = mask >> 1)
30
        num = num ^ mask;
4 jakw 31
    return num;
32
}
33
 
34
/*
45 jakw 35
 * Return the Nth bit of an unsigned integer number
4 jakw 36
 */
45 jakw 37
static bool getBit(int decimal, int N){
4 jakw 38
 
45 jakw 39
    return decimal & 1 << (N-1);
40
}
4 jakw 41
 
47 jakw 42
/*
43
 * Return the number of bits set in an integer
44
 */
45
static int countBits(int n) {
46
  unsigned int c; // c accumulates the total bits set in v
47
  for (c = 0; n>0; c++)
48
    n &= n - 1; // clear the least significant bit set
49
  return c;
50
}
51
 
52
/*
53
 * Return the position of the least significant bit that is set
54
 */
55
static int leastSignificantBitSet(int x){
56
  if(x == 0)
57
      return 0;
58
 
59
  int val = 1;
60
  while(x>>=1)
61
      val++;
62
 
63
  return val;
64
}
65
 
45 jakw 66
//static int get_bit(int decimal, int N){
4 jakw 67
 
45 jakw 68
//    // Shifting the 1 for N-1 bits
69
//    int constant = 1 << (N-1);
4 jakw 70
 
45 jakw 71
//    // If the bit is set, return 1
72
//    if( decimal & constant )
73
//        return 1;
74
//    else
75
//        return 0;
76
//}
77
 
78
static inline unsigned int powi(int num, unsigned int exponent){
79
 
4 jakw 80
    if(exponent == 0)
81
        return 1;
82
 
83
    float res = num;
84
    for(unsigned int i=0; i<exponent-1; i++)
85
        res *= num;
86
 
87
    return res;
88
}
89
 
45 jakw 90
static inline unsigned int twopowi(unsigned int exponent){
91
 
92
    return 1 << exponent;
93
}
94
 
36 jakw 95
// Algorithm
70 jakw 96
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
4 jakw 97
 
42 jakw 98
    Nbits = ceilf(log2f((float)screenCols));
99
    N = 2 + Nbits*2;
41 jakw 100
 
101
    // all on pattern
42 jakw 102
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
103
    patterns.push_back(allOn);
41 jakw 104
 
105
    // all off pattern
42 jakw 106
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
107
    patterns.push_back(allOff);
41 jakw 108
 
4 jakw 109
 
42 jakw 110
    // horizontally encoding patterns
111
    for(unsigned int p=0; p<Nbits; p++){
112
        cv::Mat pattern(1, screenCols, CV_8UC3);
113
        cv::Mat patternInv(1, screenCols, CV_8UC3);
4 jakw 114
 
42 jakw 115
        for(unsigned int j=0; j<screenCols; j++){
4 jakw 116
 
42 jakw 117
            unsigned int jGray = binaryToGray(j);
118
            // Amplitude of channels
45 jakw 119
            int bit = (int)getBit(jGray, Nbits-p);
42 jakw 120
            pattern.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*bit,255.0*bit,255.0*bit);
121
            int invBit = bit^1;
122
            patternInv.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*invBit,255.0*invBit,255.0*invBit);
4 jakw 123
        }
42 jakw 124
        patterns.push_back(pattern);
125
        patterns.push_back(patternInv);
4 jakw 126
    }
42 jakw 127
 
128
 
4 jakw 129
}
130
 
36 jakw 131
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
4 jakw 132
    return patterns[depth];
133
}
134
 
135
 
47 jakw 136
bool sortingLarger(cv::Vec4i i,cv::Vec4i j){ return (i[3]<j[3]);}
137
bool sortingEqual(cv::Vec4i i,cv::Vec4i j){ return (i[3]==j[3]);}
138
void getEdgeLabels(const cv::Mat& scanLine, int Nbits, std::vector<cv::Vec4i>& edges){
4 jakw 139
 
41 jakw 140
    int nCols = scanLine.cols;
45 jakw 141
    const int *data = scanLine.ptr<const int>(0);
41 jakw 142
 
45 jakw 143
    int labelLeft;
144
    int labelRight = data[0];
41 jakw 145
 
43 jakw 146
    // collect edges
42 jakw 147
    for(int col=1; col<nCols; col++){
41 jakw 148
 
42 jakw 149
        labelLeft = labelRight;
150
        labelRight = data[col];
151
 
47 jakw 152
        // labels need to non-background, and differ in exactly one bit
153
        if(labelLeft != -1 && labelRight != -1 && countBits(labelLeft^labelRight) == 1){
43 jakw 154
            int orderingRelation = (labelLeft << Nbits) + labelRight;
47 jakw 155
            // store left label column
156
            edges.push_back(cv::Vec4i(col-1, labelLeft, labelRight, orderingRelation));
41 jakw 157
        }
158
    }
159
 
42 jakw 160
    // sort
41 jakw 161
    std::sort(edges.begin(), edges.end(), sortingLarger);
42 jakw 162
 
163
    // remove duplicates
47 jakw 164
    std::vector<cv::Vec4i>::iterator it;
42 jakw 165
    it = std::unique(edges.begin(), edges.end(), sortingEqual);
166
    edges.resize(std::distance(edges.begin(),it));
4 jakw 167
}
168
 
42 jakw 169
void AlgorithmGrayCode::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
4 jakw 170
 
41 jakw 171
    assert(frames0.size() == N);
172
    assert(frames1.size() == N);
4 jakw 173
 
47 jakw 174
//    for(int i=0; i<1920; i++){
175
//        std::cout << i << " " << binaryToGray(i) << " " << grayToBinary(binaryToGray(i)) << std::endl;
176
//    }
45 jakw 177
 
42 jakw 178
    int frameRows = frames0[0].rows;
179
    int frameCols = frames0[0].cols;
180
 
181
    // rectifying homographies (rotation+projections)
182
    cv::Size frameSize(frameCols, frameRows);
183
    cv::Mat R, T;
184
    // stereoRectify segfaults unless R is double precision
185
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
186
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
187
    cv::Mat R0, R1, P0, P1, QRect;
188
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
189
 
47 jakw 190
//    std::cout << "R0" << std::endl << R0 << std::endl;
191
//    std::cout << "P0" << std::endl << P0 << std::endl;
192
//    std::cout << "R1" << std::endl << R1 << std::endl;
193
//    std::cout << "P1" << std::endl << P1 << std::endl;
43 jakw 194
 
41 jakw 195
    // interpolation maps
196
    cv::Mat map0X, map0Y, map1X, map1Y;
42 jakw 197
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
198
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
41 jakw 199
 
43 jakw 200
    // gray-scale and remap
201
    std::vector<cv::Mat> frames0Rect(N);
202
    std::vector<cv::Mat> frames1Rect(N);
203
    for(int i=0; i<N; i++){
204
        cv::Mat temp;
205
        cv::cvtColor(frames0[i], temp, CV_RGB2GRAY);
47 jakw 206
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_CUBIC);
43 jakw 207
        cv::cvtColor(frames1[i], temp, CV_RGB2GRAY);
47 jakw 208
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_CUBIC);
43 jakw 209
    }
41 jakw 210
 
68 jakw 211
 
212
//    cv::imwrite("frames0[0].png", frames0[0]);
213
//    cv::imwrite("frames0Rect[0].png", frames0Rect[0]);
214
 
215
//    cv::imwrite("frames1[0].png", frames1[0]);
216
//    cv::imwrite("frames1Rect[0].png", frames1Rect[0]);
217
 
47 jakw 218
 
43 jakw 219
    // color remaps
220
    cv::Mat color0Rect, color1Rect;
221
    cv::remap(frames0[0], color0Rect, map0X, map0Y, CV_INTER_CUBIC);
44 jakw 222
    cv::remap(frames1[0], color1Rect, map1X, map1Y, CV_INTER_CUBIC);
41 jakw 223
 
43 jakw 224
    int frameRectRows = frames0Rect[0].rows;
225
    int frameRectCols = frames0Rect[0].cols;
42 jakw 226
 
47 jakw 227
    // occlusion masks
43 jakw 228
    cv::Mat occlusion0Rect, occlusion1Rect;
229
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0Rect);
230
    occlusion0Rect = occlusion0Rect > 50;
231
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1Rect);
232
    occlusion1Rect = occlusion1Rect > 50;
47 jakw 233
 
234
    // erode occlusion masks
235
    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3,3));
236
    cv::erode(occlusion0Rect, occlusion0Rect, strel);
237
    cv::erode(occlusion1Rect, occlusion1Rect, strel);
238
 
43 jakw 239
//cvtools::writeMat(occlusion0Rect, "occlusion0Rect.mat", "occlusion0Rect");
240
//cvtools::writeMat(occlusion1Rect, "occlusion1Rect.mat", "occlusion1Rect");
42 jakw 241
 
43 jakw 242
    // decode patterns
45 jakw 243
    cv::Mat code0Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(-1));
244
    cv::Mat code1Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(-1));
245
    cv::add(code0Rect, 1, code0Rect, occlusion0Rect, CV_32S);
246
    cv::add(code1Rect, 1, code1Rect, occlusion1Rect, CV_32S);
43 jakw 247
 
45 jakw 248
    // into gray code
43 jakw 249
    for(int i=0; i<Nbits; i++){
250
        cv::Mat bit0;
45 jakw 251
        cv::subtract(frames0Rect[i*2+2], frames0Rect[i*2+3], bit0);
43 jakw 252
        bit0 = bit0 > 0;
45 jakw 253
        bit0.convertTo(bit0, CV_32S, 1.0/255.0);
254
//      cvtools::writeMat(bit0, "bit0.mat", "bit0");
255
        cv::add(code0Rect, bit0*twopowi(Nbits-i-1), code0Rect, occlusion0Rect, CV_32S);
43 jakw 256
        cv::Mat bit1;
45 jakw 257
        cv::subtract(frames1Rect[i*2+2], frames1Rect[i*2+3], bit1);
43 jakw 258
        bit1 = bit1 > 0;
45 jakw 259
        bit1.convertTo(bit1, CV_32S, 1.0/255.0);
260
        cv::add(code1Rect, bit1*twopowi(Nbits-i-1), code1Rect, occlusion1Rect, CV_32S);
43 jakw 261
    }
262
 
263
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
264
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
265
 
45 jakw 266
//    // convert to standard binary
267
//    for(int r=0; r<frameRectRows; r++){
268
//        for(int c=0; c<frameRectCols; c++){
269
//            if(code0Rect.at<int>(r,c) != -1)
270
//                code0Rect.at<int>(r,c) = grayToBinary(code0Rect.at<int>(r,c));
271
//            if(code1Rect.at<int>(r,c) != -1)
272
//                code1Rect.at<int>(r,c) = grayToBinary(code1Rect.at<int>(r,c));
273
//        }
274
//    }
275
 
276
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
277
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
278
 
41 jakw 279
    // matching
42 jakw 280
    std::vector<cv::Vec2f> q0Rect, q1Rect;
43 jakw 281
    for(int row=0; row<frameRectRows; row++){
41 jakw 282
 
47 jakw 283
        std::vector<cv::Vec4i> edges0, edges1;
41 jakw 284
 
43 jakw 285
        // sorted, unique edges
42 jakw 286
        getEdgeLabels(code0Rect.row(row), Nbits, edges0);
287
        getEdgeLabels(code1Rect.row(row), Nbits, edges1);
41 jakw 288
 
47 jakw 289
        // match edges
290
        std::vector<cv::Vec4i> matchedEdges0, matchedEdges1;
41 jakw 291
        int i=0, j=0;
292
        while(i<edges0.size() && j<edges1.size()){
293
 
294
            if(edges0[i][3] == edges1[j][3]){
47 jakw 295
                matchedEdges0.push_back(edges0[i]);
296
                matchedEdges1.push_back(edges1[j]);
41 jakw 297
                i += 1;
298
                j += 1;
42 jakw 299
            } else if(edges0[i][3] < edges1[j][3]){
41 jakw 300
                i += 1;
42 jakw 301
            } else if(edges0[i][3] > edges1[j][3]){
41 jakw 302
                j += 1;
303
            }
304
        }
305
 
47 jakw 306
        // crude subpixel refinement
307
        // finds the intersection of linear interpolants in the positive/negative pattern
308
        for(int i=0; i<matchedEdges0.size(); i++){
41 jakw 309
 
47 jakw 310
            int level = Nbits - leastSignificantBitSet(matchedEdges0[i][1]^matchedEdges0[i][2]);
311
 
312
            // refine for camera 0
313
            float c0 = matchedEdges0[i][0];
314
            float c1 = c0+1;
315
 
316
            float pos0 = frames0Rect[2*level+2].at<char>(row, c0);
317
            float pos1 = frames0Rect[2*level+2].at<char>(row, c1);
318
            float neg0 = frames0Rect[2*level+3].at<char>(row, c0);
319
            float neg1 = frames0Rect[2*level+3].at<char>(row, c1);
320
 
321
            float col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
322
            q0Rect.push_back(cv::Point2f(col, row));
323
 
324
            // refine for camera 1
325
            c0 = matchedEdges1[i][0];
326
            c1 = c0+1;
327
 
328
            pos0 = frames1Rect[2*level+2].at<char>(row, c0);
329
            pos1 = frames1Rect[2*level+2].at<char>(row, c1);
330
            neg0 = frames1Rect[2*level+3].at<char>(row, c0);
331
            neg1 = frames1Rect[2*level+3].at<char>(row, c1);
332
 
333
            col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
334
            q1Rect.push_back(cv::Point2f(col, row));
335
 
336
        }
337
 
41 jakw 338
    }
339
 
63 jakw 340
    int nMatches = q0Rect.size();
341
 
342
    if(nMatches < 1){
343
        Q.resize(0);
344
        color.resize(0);
345
 
346
        return;
347
    }
348
 
41 jakw 349
    // retrieve color information
350
    color.resize(nMatches);
351
    for(int i=0; i<nMatches; i++){
352
 
42 jakw 353
        cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0Rect[i][1], q0Rect[i][0]);
354
        cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1Rect[i][1], q1Rect[i][0]);
41 jakw 355
 
44 jakw 356
        color[i] = 0.5*c0 + 0.5*c1;
41 jakw 357
    }
358
 
42 jakw 359
    // triangulate points
360
    cv::Mat QMatHomogenous, QMat;
44 jakw 361
//    cv::Mat C0 = P0.clone();
362
//    cv::Mat C1 = P1.clone();
363
//    C0.colRange(0, 3) = C0.colRange(0, 3)*R0;
364
//    C1.colRange(0, 3) = C1.colRange(0, 3)*R1.t();
42 jakw 365
    cv::triangulatePoints(P0, P1, q0Rect, q1Rect, QMatHomogenous);
366
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
44 jakw 367
 
368
    // undo rectification
369
    cv::Mat R0Inv;
370
    cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
371
    QMat = R0Inv*QMat;
372
 
42 jakw 373
    cvtools::matToPoints3f(QMat, Q);
44 jakw 374
 
4 jakw 375
}