182 |
jakw |
1 |
//
|
|
|
2 |
// Gray Code Structured Light
|
|
|
3 |
//
|
|
|
4 |
// This implementation closely follows Henrik Aanaes, "Lecture Notes on Computer Vision" (2014).
|
|
|
5 |
//
|
|
|
6 |
|
41 |
jakw |
7 |
#include "AlgorithmGrayCode.h"
|
4 |
jakw |
8 |
#include <cmath>
|
42 |
jakw |
9 |
#include "cvtools.h"
|
182 |
jakw |
10 |
#include "algorithmtools.h"
|
4 |
jakw |
11 |
|
36 |
jakw |
12 |
// Algorithm
|
70 |
jakw |
13 |
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
|
4 |
jakw |
14 |
|
133 |
jakw |
15 |
Nbits = ceilf(log2f((float)screenCols)) - 1;
|
42 |
jakw |
16 |
N = 2 + Nbits*2;
|
41 |
jakw |
17 |
|
|
|
18 |
// all on pattern
|
42 |
jakw |
19 |
cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
|
|
|
20 |
patterns.push_back(allOn);
|
41 |
jakw |
21 |
|
|
|
22 |
// all off pattern
|
42 |
jakw |
23 |
cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
|
|
|
24 |
patterns.push_back(allOff);
|
41 |
jakw |
25 |
|
4 |
jakw |
26 |
|
42 |
jakw |
27 |
// horizontally encoding patterns
|
|
|
28 |
for(unsigned int p=0; p<Nbits; p++){
|
|
|
29 |
cv::Mat pattern(1, screenCols, CV_8UC3);
|
|
|
30 |
cv::Mat patternInv(1, screenCols, CV_8UC3);
|
4 |
jakw |
31 |
|
42 |
jakw |
32 |
for(unsigned int j=0; j<screenCols; j++){
|
4 |
jakw |
33 |
|
42 |
jakw |
34 |
unsigned int jGray = binaryToGray(j);
|
|
|
35 |
// Amplitude of channels
|
133 |
jakw |
36 |
int bit = (int)getBit(jGray, Nbits-p+1);
|
42 |
jakw |
37 |
pattern.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*bit,255.0*bit,255.0*bit);
|
|
|
38 |
int invBit = bit^1;
|
|
|
39 |
patternInv.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*invBit,255.0*invBit,255.0*invBit);
|
4 |
jakw |
40 |
}
|
42 |
jakw |
41 |
patterns.push_back(pattern);
|
|
|
42 |
patterns.push_back(patternInv);
|
4 |
jakw |
43 |
}
|
42 |
jakw |
44 |
|
|
|
45 |
|
4 |
jakw |
46 |
}
|
|
|
47 |
|
36 |
jakw |
48 |
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
|
4 |
jakw |
49 |
return patterns[depth];
|
|
|
50 |
}
|
|
|
51 |
|
|
|
52 |
|
47 |
jakw |
53 |
bool sortingLarger(cv::Vec4i i,cv::Vec4i j){ return (i[3]<j[3]);}
|
|
|
54 |
bool sortingEqual(cv::Vec4i i,cv::Vec4i j){ return (i[3]==j[3]);}
|
|
|
55 |
void getEdgeLabels(const cv::Mat& scanLine, int Nbits, std::vector<cv::Vec4i>& edges){
|
4 |
jakw |
56 |
|
41 |
jakw |
57 |
int nCols = scanLine.cols;
|
45 |
jakw |
58 |
const int *data = scanLine.ptr<const int>(0);
|
41 |
jakw |
59 |
|
45 |
jakw |
60 |
int labelLeft;
|
|
|
61 |
int labelRight = data[0];
|
41 |
jakw |
62 |
|
43 |
jakw |
63 |
// collect edges
|
42 |
jakw |
64 |
for(int col=1; col<nCols; col++){
|
41 |
jakw |
65 |
|
42 |
jakw |
66 |
labelLeft = labelRight;
|
|
|
67 |
labelRight = data[col];
|
|
|
68 |
|
95 |
jakw |
69 |
// labels need to be non-background, and differ in exactly one bit
|
122 |
jakw |
70 |
if(labelLeft != -1 && labelRight != -1 && (grayToBinary(labelRight) == grayToBinary(labelLeft)+1)){
|
43 |
jakw |
71 |
int orderingRelation = (labelLeft << Nbits) + labelRight;
|
47 |
jakw |
72 |
// store left label column
|
|
|
73 |
edges.push_back(cv::Vec4i(col-1, labelLeft, labelRight, orderingRelation));
|
41 |
jakw |
74 |
}
|
|
|
75 |
}
|
|
|
76 |
|
42 |
jakw |
77 |
// sort
|
41 |
jakw |
78 |
std::sort(edges.begin(), edges.end(), sortingLarger);
|
42 |
jakw |
79 |
|
|
|
80 |
// remove duplicates
|
47 |
jakw |
81 |
std::vector<cv::Vec4i>::iterator it;
|
42 |
jakw |
82 |
it = std::unique(edges.begin(), edges.end(), sortingEqual);
|
|
|
83 |
edges.resize(std::distance(edges.begin(),it));
|
4 |
jakw |
84 |
}
|
|
|
85 |
|
245 |
jakw |
86 |
void AlgorithmGrayCode::get3DPoints(const SMCalibrationParameters &calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3f>& color){
|
4 |
jakw |
87 |
|
41 |
jakw |
88 |
assert(frames0.size() == N);
|
|
|
89 |
assert(frames1.size() == N);
|
4 |
jakw |
90 |
|
42 |
jakw |
91 |
int frameRows = frames0[0].rows;
|
|
|
92 |
int frameCols = frames0[0].cols;
|
|
|
93 |
|
|
|
94 |
// rectifying homographies (rotation+projections)
|
|
|
95 |
cv::Size frameSize(frameCols, frameRows);
|
|
|
96 |
cv::Mat R, T;
|
|
|
97 |
// stereoRectify segfaults unless R is double precision
|
|
|
98 |
cv::Mat(calibration.R1).convertTo(R, CV_64F);
|
|
|
99 |
cv::Mat(calibration.T1).convertTo(T, CV_64F);
|
|
|
100 |
cv::Mat R0, R1, P0, P1, QRect;
|
|
|
101 |
cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
|
|
|
102 |
|
41 |
jakw |
103 |
// interpolation maps
|
|
|
104 |
cv::Mat map0X, map0Y, map1X, map1Y;
|
42 |
jakw |
105 |
cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
|
|
|
106 |
cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
|
41 |
jakw |
107 |
|
43 |
jakw |
108 |
// gray-scale and remap
|
|
|
109 |
std::vector<cv::Mat> frames0Rect(N);
|
|
|
110 |
std::vector<cv::Mat> frames1Rect(N);
|
167 |
jakw |
111 |
for(unsigned int i=0; i<N; i++){
|
43 |
jakw |
112 |
cv::Mat temp;
|
245 |
jakw |
113 |
cv::cvtColor(frames0[i], temp, CV_RGB2GRAY);
|
114 |
jakw |
114 |
cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
|
245 |
jakw |
115 |
cv::cvtColor(frames1[i], temp, CV_RGB2GRAY);
|
114 |
jakw |
116 |
cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
|
43 |
jakw |
117 |
}
|
41 |
jakw |
118 |
|
245 |
jakw |
119 |
#ifdef QT_DEBUG
|
236 |
jakw |
120 |
cvtools::writeMat(frames0Rect[0], "frames0Rect_0.mat", "frames0Rect_0");
|
|
|
121 |
cvtools::writeMat(frames0[0], "frames0_0.mat", "frames0_0");
|
120 |
jakw |
122 |
|
236 |
jakw |
123 |
cvtools::writeMat(frames0Rect[22], "frames0Rect_22.mat", "frames0Rect_22");
|
|
|
124 |
cvtools::writeMat(frames0Rect[23], "frames0Rect_23.mat", "frames0Rect_23");
|
68 |
jakw |
125 |
|
236 |
jakw |
126 |
cv::imwrite("frames0[0].png", frames0[0]);
|
|
|
127 |
cv::imwrite("frames0Rect[0].png", frames0Rect[0]);
|
78 |
jakw |
128 |
|
236 |
jakw |
129 |
cv::imwrite("frames1[0].png", frames1[0]);
|
|
|
130 |
cv::imwrite("frames1Rect[0].png", frames1Rect[0]);
|
|
|
131 |
#endif
|
68 |
jakw |
132 |
|
245 |
jakw |
133 |
// color remap
|
43 |
jakw |
134 |
cv::Mat color0Rect, color1Rect;
|
245 |
jakw |
135 |
cv::remap(frames0[0], color0Rect, map0X, map0Y, CV_INTER_LINEAR);
|
|
|
136 |
cv::remap(frames1[0], color1Rect, map1X, map1Y, CV_INTER_LINEAR);
|
41 |
jakw |
137 |
|
43 |
jakw |
138 |
int frameRectRows = frames0Rect[0].rows;
|
|
|
139 |
int frameRectCols = frames0Rect[0].cols;
|
42 |
jakw |
140 |
|
47 |
jakw |
141 |
// occlusion masks
|
43 |
jakw |
142 |
cv::Mat occlusion0Rect, occlusion1Rect;
|
|
|
143 |
cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0Rect);
|
245 |
jakw |
144 |
occlusion0Rect = (occlusion0Rect > 0.1) & (occlusion0Rect < 0.99);
|
43 |
jakw |
145 |
cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1Rect);
|
245 |
jakw |
146 |
occlusion1Rect = (occlusion1Rect > 0.1) & (occlusion1Rect < 0.99);
|
47 |
jakw |
147 |
|
|
|
148 |
// erode occlusion masks
|
114 |
jakw |
149 |
cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(2,2));
|
47 |
jakw |
150 |
cv::erode(occlusion0Rect, occlusion0Rect, strel);
|
|
|
151 |
cv::erode(occlusion1Rect, occlusion1Rect, strel);
|
|
|
152 |
|
120 |
jakw |
153 |
// // correct for projector inversion error
|
|
|
154 |
// cv::Mat W;
|
|
|
155 |
// cv::add(frames0Rect[0], frames0Rect[1], W, cv::noArray(), CV_32F);
|
|
|
156 |
// for(int i=2; i<N; i+=2){
|
|
|
157 |
// cv::Mat S, E;
|
|
|
158 |
// cv::add(frames0Rect[i], frames0Rect[i+1], S, cv::noArray(), CV_32F);
|
|
|
159 |
// cv::subtract(W, S, E, cv::noArray(), CV_32F);
|
|
|
160 |
// E *= 0.5;
|
|
|
161 |
// cv::add(frames0Rect[i], E, frames0Rect[i], cv::noArray(), CV_16UC1);
|
|
|
162 |
// cv::add(frames0Rect[i+1], E, frames0Rect[i+1], cv::noArray(), CV_16UC1);
|
|
|
163 |
// }
|
|
|
164 |
|
133 |
jakw |
165 |
// // correct for texture modulation and ambient
|
|
|
166 |
// cv::Mat A0 = frames0Rect[1];
|
|
|
167 |
// cv::Mat M0 = frames0Rect[0]-frames0Rect[1];
|
|
|
168 |
// cv::divide(256.0, M0, M0, CV_32F);
|
|
|
169 |
// cv::Mat A1 = frames1Rect[1];
|
|
|
170 |
// cv::Mat M1 = frames1Rect[0]-frames1Rect[1];
|
|
|
171 |
// cv::divide(256.0, M1, M1, CV_32F);
|
120 |
jakw |
172 |
|
133 |
jakw |
173 |
// for(int i=2; i<N; i++){
|
|
|
174 |
// cv::multiply(frames0Rect[i]-A0, M0, frames0Rect[i], 1.0, CV_8UC1);
|
|
|
175 |
// cv::multiply(frames1Rect[i]-A1, M1, frames1Rect[i], 1.0, CV_8UC1);
|
|
|
176 |
// }
|
120 |
jakw |
177 |
|
43 |
jakw |
178 |
// decode patterns
|
78 |
jakw |
179 |
cv::Mat code0Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
|
|
|
180 |
cv::Mat code1Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
|
43 |
jakw |
181 |
|
45 |
jakw |
182 |
// into gray code
|
167 |
jakw |
183 |
for(unsigned int i=0; i<Nbits; i++){
|
120 |
jakw |
184 |
cv::Mat temp, bit0, bit1;
|
|
|
185 |
|
|
|
186 |
cv::compare(frames0Rect[i*2+2], frames0Rect[i*2+3], temp, cv::CMP_GT);
|
|
|
187 |
temp.convertTo(bit0, CV_32S, 1.0/255.0);
|
|
|
188 |
cv::add(code0Rect, bit0*twopowi(Nbits-i-1), code0Rect, cv::noArray(), CV_32S);
|
|
|
189 |
|
|
|
190 |
cv::compare(frames1Rect[i*2+2], frames1Rect[i*2+3], temp, cv::CMP_GT);
|
|
|
191 |
temp.convertTo(bit1, CV_32S, 1.0/255.0);
|
|
|
192 |
cv::add(code1Rect, bit1*twopowi(Nbits-i-1), code1Rect, cv::noArray(), CV_32S);
|
43 |
jakw |
193 |
}
|
|
|
194 |
|
121 |
jakw |
195 |
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
|
|
|
196 |
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
|
43 |
jakw |
197 |
|
78 |
jakw |
198 |
|
245 |
jakw |
199 |
#ifdef QT_DEBUG
|
236 |
jakw |
200 |
// convert to standard binary
|
|
|
201 |
cv::Mat code0Binary(code0Rect.rows, code0Rect.cols, CV_32F);
|
|
|
202 |
cv::Mat code1Binary(code1Rect.rows, code1Rect.cols, CV_32F);
|
|
|
203 |
for(int r=0; r<frameRectRows; r++){
|
|
|
204 |
for(int c=0; c<frameRectCols; c++){
|
|
|
205 |
if(code0Rect.at<int>(r,c) != -1)
|
|
|
206 |
code0Binary.at<float>(r,c) = grayToBinary(code0Rect.at<int>(r,c));
|
|
|
207 |
if(code1Rect.at<int>(r,c) != -1)
|
|
|
208 |
code1Binary.at<float>(r,c) = grayToBinary(code1Rect.at<int>(r,c));
|
|
|
209 |
}
|
|
|
210 |
}
|
45 |
jakw |
211 |
|
236 |
jakw |
212 |
cvtools::writeMat(code0Binary, "code0Binary.mat", "code0Binary");
|
|
|
213 |
cvtools::writeMat(code1Binary, "code1Binary.mat", "code1Binary");
|
|
|
214 |
#endif
|
45 |
jakw |
215 |
|
78 |
jakw |
216 |
// // threshold on vertical discontinuities (due to imperfect rectification)
|
|
|
217 |
// cv::Mat edges0;
|
|
|
218 |
// cv::Sobel(code0Binary, edges0, -1, 0, 1, 5);
|
|
|
219 |
// occlusion0Rect = occlusion0Rect & (abs(edges0) < 50);
|
|
|
220 |
|
|
|
221 |
// cv::Mat edges1;
|
|
|
222 |
// cv::Sobel(code1Binary, edges1, -1, 0, 1, 5);
|
|
|
223 |
// occlusion1Rect = occlusion1Rect & (abs(edges1) < 50);
|
|
|
224 |
|
|
|
225 |
|
|
|
226 |
// set occluded pixels to -1
|
|
|
227 |
for(int r=0; r<frameRectRows; r++){
|
|
|
228 |
for(int c=0; c<frameRectCols; c++){
|
120 |
jakw |
229 |
if(occlusion0Rect.at<unsigned char>(r,c) == 0)
|
|
|
230 |
code0Rect.at<int>(r,c) = -1;
|
|
|
231 |
if(occlusion1Rect.at<unsigned char>(r,c) == 0)
|
|
|
232 |
code1Rect.at<int>(r,c) = -1;
|
78 |
jakw |
233 |
}
|
|
|
234 |
}
|
|
|
235 |
|
245 |
jakw |
236 |
#ifdef QT_DEBUG
|
236 |
jakw |
237 |
cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
|
245 |
jakw |
238 |
cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
|
236 |
jakw |
239 |
#endif
|
120 |
jakw |
240 |
|
41 |
jakw |
241 |
// matching
|
236 |
jakw |
242 |
std::vector<cv::Vec2f> q0, q1;
|
43 |
jakw |
243 |
for(int row=0; row<frameRectRows; row++){
|
41 |
jakw |
244 |
|
95 |
jakw |
245 |
// edge data structure containing [floor(column), labelLeft, labelRight, orderingRelation]
|
47 |
jakw |
246 |
std::vector<cv::Vec4i> edges0, edges1;
|
41 |
jakw |
247 |
|
43 |
jakw |
248 |
// sorted, unique edges
|
42 |
jakw |
249 |
getEdgeLabels(code0Rect.row(row), Nbits, edges0);
|
|
|
250 |
getEdgeLabels(code1Rect.row(row), Nbits, edges1);
|
41 |
jakw |
251 |
|
47 |
jakw |
252 |
// match edges
|
|
|
253 |
std::vector<cv::Vec4i> matchedEdges0, matchedEdges1;
|
167 |
jakw |
254 |
unsigned int i=0, j=0;
|
41 |
jakw |
255 |
while(i<edges0.size() && j<edges1.size()){
|
|
|
256 |
|
|
|
257 |
if(edges0[i][3] == edges1[j][3]){
|
47 |
jakw |
258 |
matchedEdges0.push_back(edges0[i]);
|
|
|
259 |
matchedEdges1.push_back(edges1[j]);
|
41 |
jakw |
260 |
i += 1;
|
|
|
261 |
j += 1;
|
42 |
jakw |
262 |
} else if(edges0[i][3] < edges1[j][3]){
|
41 |
jakw |
263 |
i += 1;
|
42 |
jakw |
264 |
} else if(edges0[i][3] > edges1[j][3]){
|
41 |
jakw |
265 |
j += 1;
|
|
|
266 |
}
|
|
|
267 |
}
|
|
|
268 |
|
47 |
jakw |
269 |
// crude subpixel refinement
|
|
|
270 |
// finds the intersection of linear interpolants in the positive/negative pattern
|
167 |
jakw |
271 |
for(unsigned int i=0; i<matchedEdges0.size(); i++){
|
41 |
jakw |
272 |
|
47 |
jakw |
273 |
int level = Nbits - leastSignificantBitSet(matchedEdges0[i][1]^matchedEdges0[i][2]);
|
|
|
274 |
|
|
|
275 |
// refine for camera 0
|
|
|
276 |
float c0 = matchedEdges0[i][0];
|
|
|
277 |
float c1 = c0+1;
|
|
|
278 |
|
245 |
jakw |
279 |
float pos0 = frames0Rect[2*level+2].at<float>(row, c0);
|
|
|
280 |
float pos1 = frames0Rect[2*level+2].at<float>(row, c1);
|
|
|
281 |
float neg0 = frames0Rect[2*level+3].at<float>(row, c0);
|
|
|
282 |
float neg1 = frames0Rect[2*level+3].at<float>(row, c1);
|
47 |
jakw |
283 |
|
|
|
284 |
float col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
|
236 |
jakw |
285 |
q0.push_back(cv::Point2f(col, row));
|
47 |
jakw |
286 |
|
|
|
287 |
// refine for camera 1
|
|
|
288 |
c0 = matchedEdges1[i][0];
|
|
|
289 |
c1 = c0+1;
|
|
|
290 |
|
245 |
jakw |
291 |
pos0 = frames1Rect[2*level+2].at<float>(row, c0);
|
|
|
292 |
pos1 = frames1Rect[2*level+2].at<float>(row, c1);
|
|
|
293 |
neg0 = frames1Rect[2*level+3].at<float>(row, c0);
|
|
|
294 |
neg1 = frames1Rect[2*level+3].at<float>(row, c1);
|
47 |
jakw |
295 |
|
|
|
296 |
col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
|
236 |
jakw |
297 |
q1.push_back(cv::Point2f(col, row));
|
47 |
jakw |
298 |
|
|
|
299 |
}
|
|
|
300 |
|
41 |
jakw |
301 |
}
|
|
|
302 |
|
236 |
jakw |
303 |
int nMatches = q0.size();
|
63 |
jakw |
304 |
|
|
|
305 |
if(nMatches < 1){
|
|
|
306 |
Q.resize(0);
|
|
|
307 |
color.resize(0);
|
|
|
308 |
|
|
|
309 |
return;
|
|
|
310 |
}
|
|
|
311 |
|
95 |
jakw |
312 |
// retrieve color information (at integer coordinates)
|
41 |
jakw |
313 |
color.resize(nMatches);
|
|
|
314 |
for(int i=0; i<nMatches; i++){
|
|
|
315 |
|
245 |
jakw |
316 |
cv::Vec3f c0 = color0Rect.at<cv::Vec3f>(q0[i][1], q0[i][0]);
|
|
|
317 |
cv::Vec3f c1 = color1Rect.at<cv::Vec3f>(q1[i][1], q1[i][0]);
|
41 |
jakw |
318 |
|
44 |
jakw |
319 |
color[i] = 0.5*c0 + 0.5*c1;
|
41 |
jakw |
320 |
}
|
|
|
321 |
|
231 |
jakw |
322 |
// Triangulate by means of disparity projection
|
236 |
jakw |
323 |
Q.resize(q0.size());
|
231 |
jakw |
324 |
cv::Matx44f QRectx = cv::Matx44f(QRect);
|
|
|
325 |
cv::Matx33f R0invx = cv::Matx33f(cv::Mat(R0.t()));
|
|
|
326 |
|
|
|
327 |
#pragma omp parallel for
|
236 |
jakw |
328 |
for(unsigned int i=0; i<q0.size(); i++){
|
|
|
329 |
float disparity = q0[i][0]-q1[i][0];
|
|
|
330 |
cv::Vec4f Qih = QRectx*cv::Vec4f(q0[i][0], q0[i][1], disparity, 1.0);
|
231 |
jakw |
331 |
float winv = float(1.0)/Qih[3];
|
|
|
332 |
Q[i] = R0invx * cv::Point3f(Qih[0]*winv, Qih[1]*winv, Qih[2]*winv);
|
|
|
333 |
}
|
|
|
334 |
|
4 |
jakw |
335 |
}
|