Subversion Repositories seema-scanner

Rev

Rev 236 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
182 jakw 1
//
2
// Gray Code Structured Light
3
//
4
// This implementation closely follows Henrik Aanaes, "Lecture Notes on Computer Vision" (2014).
5
//
6
 
41 jakw 7
#include "AlgorithmGrayCode.h"
4 jakw 8
#include <cmath>
42 jakw 9
#include "cvtools.h"
182 jakw 10
#include "algorithmtools.h"
4 jakw 11
 
36 jakw 12
// Algorithm
70 jakw 13
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
4 jakw 14
 
133 jakw 15
    Nbits = ceilf(log2f((float)screenCols)) - 1;
42 jakw 16
    N = 2 + Nbits*2;
41 jakw 17
 
18
    // all on pattern
42 jakw 19
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
20
    patterns.push_back(allOn);
41 jakw 21
 
22
    // all off pattern
42 jakw 23
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
24
    patterns.push_back(allOff);
41 jakw 25
 
4 jakw 26
 
42 jakw 27
    // horizontally encoding patterns
28
    for(unsigned int p=0; p<Nbits; p++){
29
        cv::Mat pattern(1, screenCols, CV_8UC3);
30
        cv::Mat patternInv(1, screenCols, CV_8UC3);
4 jakw 31
 
42 jakw 32
        for(unsigned int j=0; j<screenCols; j++){
4 jakw 33
 
42 jakw 34
            unsigned int jGray = binaryToGray(j);
35
            // Amplitude of channels
133 jakw 36
            int bit = (int)getBit(jGray, Nbits-p+1);
42 jakw 37
            pattern.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*bit,255.0*bit,255.0*bit);
38
            int invBit = bit^1;
39
            patternInv.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*invBit,255.0*invBit,255.0*invBit);
4 jakw 40
        }
42 jakw 41
        patterns.push_back(pattern);
42
        patterns.push_back(patternInv);
4 jakw 43
    }
42 jakw 44
 
45
 
4 jakw 46
}
47
 
36 jakw 48
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
4 jakw 49
    return patterns[depth];
50
}
51
 
52
 
47 jakw 53
bool sortingLarger(cv::Vec4i i,cv::Vec4i j){ return (i[3]<j[3]);}
54
bool sortingEqual(cv::Vec4i i,cv::Vec4i j){ return (i[3]==j[3]);}
55
void getEdgeLabels(const cv::Mat& scanLine, int Nbits, std::vector<cv::Vec4i>& edges){
4 jakw 56
 
41 jakw 57
    int nCols = scanLine.cols;
45 jakw 58
    const int *data = scanLine.ptr<const int>(0);
41 jakw 59
 
45 jakw 60
    int labelLeft;
61
    int labelRight = data[0];
41 jakw 62
 
43 jakw 63
    // collect edges
42 jakw 64
    for(int col=1; col<nCols; col++){
41 jakw 65
 
42 jakw 66
        labelLeft = labelRight;
67
        labelRight = data[col];
68
 
95 jakw 69
        // labels need to be non-background, and differ in exactly one bit
122 jakw 70
        if(labelLeft != -1 && labelRight != -1 && (grayToBinary(labelRight) == grayToBinary(labelLeft)+1)){
43 jakw 71
            int orderingRelation = (labelLeft << Nbits) + labelRight;
47 jakw 72
            // store left label column
73
            edges.push_back(cv::Vec4i(col-1, labelLeft, labelRight, orderingRelation));
41 jakw 74
        }
75
    }
76
 
42 jakw 77
    // sort
41 jakw 78
    std::sort(edges.begin(), edges.end(), sortingLarger);
42 jakw 79
 
80
    // remove duplicates
47 jakw 81
    std::vector<cv::Vec4i>::iterator it;
42 jakw 82
    it = std::unique(edges.begin(), edges.end(), sortingEqual);
83
    edges.resize(std::distance(edges.begin(),it));
4 jakw 84
}
85
 
245 jakw 86
void AlgorithmGrayCode::get3DPoints(const SMCalibrationParameters &calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3f>& color){
4 jakw 87
 
41 jakw 88
    assert(frames0.size() == N);
89
    assert(frames1.size() == N);
4 jakw 90
 
42 jakw 91
    int frameRows = frames0[0].rows;
92
    int frameCols = frames0[0].cols;
93
 
94
    // rectifying homographies (rotation+projections)
95
    cv::Size frameSize(frameCols, frameRows);
96
    cv::Mat R, T;
97
    // stereoRectify segfaults unless R is double precision
98
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
99
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
100
    cv::Mat R0, R1, P0, P1, QRect;
101
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
102
 
41 jakw 103
    // interpolation maps
104
    cv::Mat map0X, map0Y, map1X, map1Y;
42 jakw 105
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
106
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
41 jakw 107
 
43 jakw 108
    // gray-scale and remap
109
    std::vector<cv::Mat> frames0Rect(N);
110
    std::vector<cv::Mat> frames1Rect(N);
167 jakw 111
    for(unsigned int i=0; i<N; i++){
43 jakw 112
        cv::Mat temp;
245 jakw 113
        cv::cvtColor(frames0[i], temp, CV_RGB2GRAY);
114 jakw 114
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
245 jakw 115
        cv::cvtColor(frames1[i], temp, CV_RGB2GRAY);
114 jakw 116
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
43 jakw 117
    }
41 jakw 118
 
245 jakw 119
    #ifdef QT_DEBUG
236 jakw 120
        cvtools::writeMat(frames0Rect[0], "frames0Rect_0.mat", "frames0Rect_0");
121
        cvtools::writeMat(frames0[0], "frames0_0.mat", "frames0_0");
120 jakw 122
 
236 jakw 123
        cvtools::writeMat(frames0Rect[22], "frames0Rect_22.mat", "frames0Rect_22");
124
        cvtools::writeMat(frames0Rect[23], "frames0Rect_23.mat", "frames0Rect_23");
68 jakw 125
 
236 jakw 126
        cv::imwrite("frames0[0].png", frames0[0]);
127
        cv::imwrite("frames0Rect[0].png", frames0Rect[0]);
78 jakw 128
 
236 jakw 129
        cv::imwrite("frames1[0].png", frames1[0]);
130
        cv::imwrite("frames1Rect[0].png", frames1Rect[0]);
131
    #endif
68 jakw 132
 
245 jakw 133
    // color remap
43 jakw 134
    cv::Mat color0Rect, color1Rect;
245 jakw 135
    cv::remap(frames0[0], color0Rect, map0X, map0Y, CV_INTER_LINEAR);
136
    cv::remap(frames1[0], color1Rect, map1X, map1Y, CV_INTER_LINEAR);
41 jakw 137
 
43 jakw 138
    int frameRectRows = frames0Rect[0].rows;
139
    int frameRectCols = frames0Rect[0].cols;
42 jakw 140
 
47 jakw 141
    // occlusion masks
43 jakw 142
    cv::Mat occlusion0Rect, occlusion1Rect;
143
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0Rect);
245 jakw 144
    occlusion0Rect = (occlusion0Rect > 0.1) & (occlusion0Rect < 0.99);
43 jakw 145
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1Rect);
245 jakw 146
    occlusion1Rect = (occlusion1Rect > 0.1) & (occlusion1Rect < 0.99);
47 jakw 147
 
148
    // erode occlusion masks
114 jakw 149
    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(2,2));
47 jakw 150
    cv::erode(occlusion0Rect, occlusion0Rect, strel);
151
    cv::erode(occlusion1Rect, occlusion1Rect, strel);
152
 
120 jakw 153
//    // correct for projector inversion error
154
//    cv::Mat W;
155
//    cv::add(frames0Rect[0], frames0Rect[1], W, cv::noArray(), CV_32F);
156
//    for(int i=2; i<N; i+=2){
157
//        cv::Mat S, E;
158
//        cv::add(frames0Rect[i], frames0Rect[i+1], S, cv::noArray(), CV_32F);
159
//        cv::subtract(W, S, E, cv::noArray(), CV_32F);
160
//        E *= 0.5;
161
//        cv::add(frames0Rect[i], E, frames0Rect[i], cv::noArray(), CV_16UC1);
162
//        cv::add(frames0Rect[i+1], E, frames0Rect[i+1], cv::noArray(), CV_16UC1);
163
//    }
164
 
133 jakw 165
//    // correct for texture modulation and ambient
166
//    cv::Mat A0 = frames0Rect[1];
167
//    cv::Mat M0 = frames0Rect[0]-frames0Rect[1];
168
//    cv::divide(256.0, M0, M0, CV_32F);
169
//    cv::Mat A1 = frames1Rect[1];
170
//    cv::Mat M1 = frames1Rect[0]-frames1Rect[1];
171
//    cv::divide(256.0, M1, M1, CV_32F);
120 jakw 172
 
133 jakw 173
//    for(int i=2; i<N; i++){
174
//        cv::multiply(frames0Rect[i]-A0, M0, frames0Rect[i], 1.0, CV_8UC1);
175
//        cv::multiply(frames1Rect[i]-A1, M1, frames1Rect[i], 1.0, CV_8UC1);
176
//    }
120 jakw 177
 
43 jakw 178
    // decode patterns
78 jakw 179
    cv::Mat code0Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
180
    cv::Mat code1Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
43 jakw 181
 
45 jakw 182
    // into gray code
167 jakw 183
    for(unsigned int i=0; i<Nbits; i++){
120 jakw 184
        cv::Mat temp, bit0, bit1;
185
 
186
        cv::compare(frames0Rect[i*2+2], frames0Rect[i*2+3], temp, cv::CMP_GT);
187
        temp.convertTo(bit0, CV_32S, 1.0/255.0);
188
        cv::add(code0Rect, bit0*twopowi(Nbits-i-1), code0Rect, cv::noArray(), CV_32S);
189
 
190
        cv::compare(frames1Rect[i*2+2], frames1Rect[i*2+3], temp, cv::CMP_GT);
191
        temp.convertTo(bit1, CV_32S, 1.0/255.0);
192
        cv::add(code1Rect, bit1*twopowi(Nbits-i-1), code1Rect, cv::noArray(), CV_32S);
43 jakw 193
    }
194
 
121 jakw 195
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
196
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
43 jakw 197
 
78 jakw 198
 
245 jakw 199
    #ifdef QT_DEBUG
236 jakw 200
        // convert to standard binary
201
        cv::Mat code0Binary(code0Rect.rows, code0Rect.cols, CV_32F);
202
        cv::Mat code1Binary(code1Rect.rows, code1Rect.cols, CV_32F);
203
        for(int r=0; r<frameRectRows; r++){
204
            for(int c=0; c<frameRectCols; c++){
205
                if(code0Rect.at<int>(r,c) != -1)
206
                    code0Binary.at<float>(r,c) = grayToBinary(code0Rect.at<int>(r,c));
207
                if(code1Rect.at<int>(r,c) != -1)
208
                    code1Binary.at<float>(r,c) = grayToBinary(code1Rect.at<int>(r,c));
209
            }
210
        }
45 jakw 211
 
236 jakw 212
        cvtools::writeMat(code0Binary, "code0Binary.mat", "code0Binary");
213
        cvtools::writeMat(code1Binary, "code1Binary.mat", "code1Binary");
214
    #endif
45 jakw 215
 
78 jakw 216
//    // threshold on vertical discontinuities (due to imperfect rectification)
217
//    cv::Mat edges0;
218
//    cv::Sobel(code0Binary, edges0, -1, 0, 1, 5);
219
//    occlusion0Rect = occlusion0Rect & (abs(edges0) < 50);
220
 
221
//    cv::Mat edges1;
222
//    cv::Sobel(code1Binary, edges1, -1, 0, 1, 5);
223
//    occlusion1Rect = occlusion1Rect & (abs(edges1) < 50);
224
 
225
 
226
    // set occluded pixels to -1
227
    for(int r=0; r<frameRectRows; r++){
228
        for(int c=0; c<frameRectCols; c++){
120 jakw 229
            if(occlusion0Rect.at<unsigned char>(r,c) == 0)
230
                code0Rect.at<int>(r,c) = -1;
231
            if(occlusion1Rect.at<unsigned char>(r,c) == 0)
232
                code1Rect.at<int>(r,c) = -1;
78 jakw 233
        }
234
    }
235
 
245 jakw 236
    #ifdef QT_DEBUG
236 jakw 237
        cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
245 jakw 238
        cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
236 jakw 239
    #endif
120 jakw 240
 
41 jakw 241
    // matching
236 jakw 242
    std::vector<cv::Vec2f> q0, q1;
43 jakw 243
    for(int row=0; row<frameRectRows; row++){
41 jakw 244
 
95 jakw 245
        // edge data structure containing [floor(column), labelLeft, labelRight, orderingRelation]
47 jakw 246
        std::vector<cv::Vec4i> edges0, edges1;
41 jakw 247
 
43 jakw 248
        // sorted, unique edges
42 jakw 249
        getEdgeLabels(code0Rect.row(row), Nbits, edges0);
250
        getEdgeLabels(code1Rect.row(row), Nbits, edges1);
41 jakw 251
 
47 jakw 252
        // match edges
253
        std::vector<cv::Vec4i> matchedEdges0, matchedEdges1;
167 jakw 254
        unsigned int i=0, j=0;
41 jakw 255
        while(i<edges0.size() && j<edges1.size()){
256
 
257
            if(edges0[i][3] == edges1[j][3]){
47 jakw 258
                matchedEdges0.push_back(edges0[i]);
259
                matchedEdges1.push_back(edges1[j]);
41 jakw 260
                i += 1;
261
                j += 1;
42 jakw 262
            } else if(edges0[i][3] < edges1[j][3]){
41 jakw 263
                i += 1;
42 jakw 264
            } else if(edges0[i][3] > edges1[j][3]){
41 jakw 265
                j += 1;
266
            }
267
        }
268
 
47 jakw 269
        // crude subpixel refinement
270
        // finds the intersection of linear interpolants in the positive/negative pattern
167 jakw 271
        for(unsigned int i=0; i<matchedEdges0.size(); i++){
41 jakw 272
 
47 jakw 273
            int level = Nbits - leastSignificantBitSet(matchedEdges0[i][1]^matchedEdges0[i][2]);
274
 
275
            // refine for camera 0
276
            float c0 = matchedEdges0[i][0];
277
            float c1 = c0+1;
278
 
245 jakw 279
            float pos0 = frames0Rect[2*level+2].at<float>(row, c0);
280
            float pos1 = frames0Rect[2*level+2].at<float>(row, c1);
281
            float neg0 = frames0Rect[2*level+3].at<float>(row, c0);
282
            float neg1 = frames0Rect[2*level+3].at<float>(row, c1);
47 jakw 283
 
284
            float col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
236 jakw 285
            q0.push_back(cv::Point2f(col, row));
47 jakw 286
 
287
            // refine for camera 1
288
            c0 = matchedEdges1[i][0];
289
            c1 = c0+1;
290
 
245 jakw 291
            pos0 = frames1Rect[2*level+2].at<float>(row, c0);
292
            pos1 = frames1Rect[2*level+2].at<float>(row, c1);
293
            neg0 = frames1Rect[2*level+3].at<float>(row, c0);
294
            neg1 = frames1Rect[2*level+3].at<float>(row, c1);
47 jakw 295
 
296
            col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
236 jakw 297
            q1.push_back(cv::Point2f(col, row));
47 jakw 298
 
299
        }
300
 
41 jakw 301
    }
302
 
236 jakw 303
    int nMatches = q0.size();
63 jakw 304
 
305
    if(nMatches < 1){
306
        Q.resize(0);
307
        color.resize(0);
308
 
309
        return;
310
    }
311
 
95 jakw 312
    // retrieve color information (at integer coordinates)
41 jakw 313
    color.resize(nMatches);
314
    for(int i=0; i<nMatches; i++){
315
 
245 jakw 316
        cv::Vec3f c0 = color0Rect.at<cv::Vec3f>(q0[i][1], q0[i][0]);
317
        cv::Vec3f c1 = color1Rect.at<cv::Vec3f>(q1[i][1], q1[i][0]);
41 jakw 318
 
44 jakw 319
        color[i] = 0.5*c0 + 0.5*c1;
41 jakw 320
    }
321
 
231 jakw 322
    // Triangulate by means of disparity projection
236 jakw 323
    Q.resize(q0.size());
231 jakw 324
    cv::Matx44f QRectx = cv::Matx44f(QRect);
325
    cv::Matx33f R0invx = cv::Matx33f(cv::Mat(R0.t()));
326
 
327
    #pragma omp parallel for
236 jakw 328
    for(unsigned int i=0; i<q0.size(); i++){
329
        float disparity = q0[i][0]-q1[i][0];
330
        cv::Vec4f Qih = QRectx*cv::Vec4f(q0[i][0], q0[i][1], disparity, 1.0);
231 jakw 331
        float winv = float(1.0)/Qih[3];
332
        Q[i] = R0invx * cv::Point3f(Qih[0]*winv, Qih[1]*winv, Qih[2]*winv);
333
    }
334
 
4 jakw 335
}