Subversion Repositories seema-scanner

Rev

Rev 98 | Rev 114 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
41 jakw 1
#include "AlgorithmGrayCode.h"
4 jakw 2
#include <cmath>
42 jakw 3
#include "cvtools.h"
4 jakw 4
 
5
#ifndef log2f
6
#define log2f(x) (log(x)/log(2.0))
7
#endif
8
 
41 jakw 9
//using namespace std;
4 jakw 10
 
11
/*
12
 * The purpose of this function is to convert an unsigned
13
 * binary number to reflected binary Gray code.
14
 *
15
 * The operator >> is shift right. The operator ^ is exclusive or.
16
 * Source: http://en.wikipedia.org/wiki/Gray_code
17
 */
18
static unsigned int binaryToGray(unsigned int num) {
19
    return (num >> 1) ^ num;
20
}
21
 
22
/*
23
 * From Wikipedia: http://en.wikipedia.org/wiki/Gray_code
24
 * The purpose of this function is to convert a reflected binary
25
 * Gray code number to a binary number.
26
 */
45 jakw 27
static unsigned int grayToBinary(unsigned int num){
28
    unsigned int mask;
29
    for(mask = num >> 1; mask != 0; mask = mask >> 1)
30
        num = num ^ mask;
4 jakw 31
    return num;
32
}
33
 
34
/*
45 jakw 35
 * Return the Nth bit of an unsigned integer number
4 jakw 36
 */
45 jakw 37
static bool getBit(int decimal, int N){
4 jakw 38
 
45 jakw 39
    return decimal & 1 << (N-1);
40
}
4 jakw 41
 
47 jakw 42
/*
43
 * Return the number of bits set in an integer
44
 */
45
static int countBits(int n) {
46
  unsigned int c; // c accumulates the total bits set in v
47
  for (c = 0; n>0; c++)
48
    n &= n - 1; // clear the least significant bit set
49
  return c;
50
}
51
 
52
/*
53
 * Return the position of the least significant bit that is set
54
 */
55
static int leastSignificantBitSet(int x){
56
  if(x == 0)
57
      return 0;
58
 
59
  int val = 1;
60
  while(x>>=1)
61
      val++;
62
 
63
  return val;
64
}
65
 
45 jakw 66
//static int get_bit(int decimal, int N){
4 jakw 67
 
45 jakw 68
//    // Shifting the 1 for N-1 bits
69
//    int constant = 1 << (N-1);
4 jakw 70
 
45 jakw 71
//    // If the bit is set, return 1
72
//    if( decimal & constant )
73
//        return 1;
74
//    else
75
//        return 0;
76
//}
77
 
78
static inline unsigned int powi(int num, unsigned int exponent){
79
 
4 jakw 80
    if(exponent == 0)
81
        return 1;
82
 
83
    float res = num;
84
    for(unsigned int i=0; i<exponent-1; i++)
85
        res *= num;
86
 
87
    return res;
88
}
89
 
45 jakw 90
static inline unsigned int twopowi(unsigned int exponent){
91
 
92
    return 1 << exponent;
93
}
94
 
36 jakw 95
// Algorithm
70 jakw 96
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
4 jakw 97
 
42 jakw 98
    Nbits = ceilf(log2f((float)screenCols));
99
    N = 2 + Nbits*2;
41 jakw 100
 
101
    // all on pattern
42 jakw 102
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
103
    patterns.push_back(allOn);
41 jakw 104
 
105
    // all off pattern
42 jakw 106
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
107
    patterns.push_back(allOff);
41 jakw 108
 
4 jakw 109
 
42 jakw 110
    // horizontally encoding patterns
111
    for(unsigned int p=0; p<Nbits; p++){
112
        cv::Mat pattern(1, screenCols, CV_8UC3);
113
        cv::Mat patternInv(1, screenCols, CV_8UC3);
4 jakw 114
 
42 jakw 115
        for(unsigned int j=0; j<screenCols; j++){
4 jakw 116
 
42 jakw 117
            unsigned int jGray = binaryToGray(j);
118
            // Amplitude of channels
45 jakw 119
            int bit = (int)getBit(jGray, Nbits-p);
42 jakw 120
            pattern.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*bit,255.0*bit,255.0*bit);
121
            int invBit = bit^1;
122
            patternInv.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*invBit,255.0*invBit,255.0*invBit);
4 jakw 123
        }
42 jakw 124
        patterns.push_back(pattern);
125
        patterns.push_back(patternInv);
4 jakw 126
    }
42 jakw 127
 
128
 
4 jakw 129
}
130
 
36 jakw 131
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
4 jakw 132
    return patterns[depth];
133
}
134
 
135
 
47 jakw 136
bool sortingLarger(cv::Vec4i i,cv::Vec4i j){ return (i[3]<j[3]);}
137
bool sortingEqual(cv::Vec4i i,cv::Vec4i j){ return (i[3]==j[3]);}
138
void getEdgeLabels(const cv::Mat& scanLine, int Nbits, std::vector<cv::Vec4i>& edges){
4 jakw 139
 
41 jakw 140
    int nCols = scanLine.cols;
45 jakw 141
    const int *data = scanLine.ptr<const int>(0);
41 jakw 142
 
45 jakw 143
    int labelLeft;
144
    int labelRight = data[0];
41 jakw 145
 
43 jakw 146
    // collect edges
42 jakw 147
    for(int col=1; col<nCols; col++){
41 jakw 148
 
42 jakw 149
        labelLeft = labelRight;
150
        labelRight = data[col];
151
 
95 jakw 152
        // labels need to be non-background, and differ in exactly one bit
47 jakw 153
        if(labelLeft != -1 && labelRight != -1 && countBits(labelLeft^labelRight) == 1){
43 jakw 154
            int orderingRelation = (labelLeft << Nbits) + labelRight;
47 jakw 155
            // store left label column
156
            edges.push_back(cv::Vec4i(col-1, labelLeft, labelRight, orderingRelation));
41 jakw 157
        }
158
    }
159
 
42 jakw 160
    // sort
41 jakw 161
    std::sort(edges.begin(), edges.end(), sortingLarger);
42 jakw 162
 
163
    // remove duplicates
47 jakw 164
    std::vector<cv::Vec4i>::iterator it;
42 jakw 165
    it = std::unique(edges.begin(), edges.end(), sortingEqual);
166
    edges.resize(std::distance(edges.begin(),it));
4 jakw 167
}
168
 
98 jakw 169
static cv::Vec3b getColorSubpix(const cv::Mat& img, cv::Point2f pt){
95 jakw 170
    assert(!img.empty());
171
    assert(img.channels() == 3);
172
 
173
    int x = (int)pt.x;
174
    int y = (int)pt.y;
175
 
176
    int x0 = cv::borderInterpolate(x,   img.cols, cv::BORDER_REFLECT_101);
177
    int x1 = cv::borderInterpolate(x+1, img.cols, cv::BORDER_REFLECT_101);
178
    int y0 = cv::borderInterpolate(y,   img.rows, cv::BORDER_REFLECT_101);
179
    int y1 = cv::borderInterpolate(y+1, img.rows, cv::BORDER_REFLECT_101);
180
 
181
    float a = pt.x - (float)x;
182
    float c = pt.y - (float)y;
183
 
184
    uchar b = (uchar)cvRound((img.at<cv::Vec3b>(y0, x0)[0] * (1.f - a) + img.at<cv::Vec3b>(y0, x1)[0] * a) * (1.f - c)
185
                           + (img.at<cv::Vec3b>(y1, x0)[0] * (1.f - a) + img.at<cv::Vec3b>(y1, x1)[0] * a) * c);
186
    uchar g = (uchar)cvRound((img.at<cv::Vec3b>(y0, x0)[1] * (1.f - a) + img.at<cv::Vec3b>(y0, x1)[1] * a) * (1.f - c)
187
                           + (img.at<cv::Vec3b>(y1, x0)[1] * (1.f - a) + img.at<cv::Vec3b>(y1, x1)[1] * a) * c);
188
    uchar r = (uchar)cvRound((img.at<cv::Vec3b>(y0, x0)[2] * (1.f - a) + img.at<cv::Vec3b>(y0, x1)[2] * a) * (1.f - c)
189
                           + (img.at<cv::Vec3b>(y1, x0)[2] * (1.f - a) + img.at<cv::Vec3b>(y1, x1)[2] * a) * c);
190
 
191
    return cv::Vec3b(b, g, r);
192
}
193
 
42 jakw 194
void AlgorithmGrayCode::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
4 jakw 195
 
41 jakw 196
    assert(frames0.size() == N);
197
    assert(frames1.size() == N);
4 jakw 198
 
47 jakw 199
//    for(int i=0; i<1920; i++){
200
//        std::cout << i << " " << binaryToGray(i) << " " << grayToBinary(binaryToGray(i)) << std::endl;
201
//    }
45 jakw 202
 
42 jakw 203
    int frameRows = frames0[0].rows;
204
    int frameCols = frames0[0].cols;
205
 
206
    // rectifying homographies (rotation+projections)
207
    cv::Size frameSize(frameCols, frameRows);
208
    cv::Mat R, T;
209
    // stereoRectify segfaults unless R is double precision
210
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
211
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
212
    cv::Mat R0, R1, P0, P1, QRect;
213
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
214
 
47 jakw 215
//    std::cout << "R0" << std::endl << R0 << std::endl;
216
//    std::cout << "P0" << std::endl << P0 << std::endl;
217
//    std::cout << "R1" << std::endl << R1 << std::endl;
218
//    std::cout << "P1" << std::endl << P1 << std::endl;
43 jakw 219
 
41 jakw 220
    // interpolation maps
221
    cv::Mat map0X, map0Y, map1X, map1Y;
42 jakw 222
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
223
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
41 jakw 224
 
43 jakw 225
    // gray-scale and remap
226
    std::vector<cv::Mat> frames0Rect(N);
227
    std::vector<cv::Mat> frames1Rect(N);
228
    for(int i=0; i<N; i++){
229
        cv::Mat temp;
113 jakw 230
        cv::cvtColor(frames0[i], temp, CV_BayerBG2GRAY);
47 jakw 231
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_CUBIC);
113 jakw 232
        cv::cvtColor(frames1[i], temp, CV_BayerBG2GRAY);
47 jakw 233
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_CUBIC);
43 jakw 234
    }
41 jakw 235
 
78 jakw 236
//    cvtools::writeMat(frames0Rect[0], "frames0Rect_0.mat", "frames0Rect_0");
237
//    cvtools::writeMat(frames0Rect[1], "frames0Rect_1.mat", "frames0Rect_1");
68 jakw 238
 
78 jakw 239
//    cvtools::writeMat(frames0Rect[22], "frames0Rect_22.mat", "frames0Rect_22");
240
//    cvtools::writeMat(frames0Rect[23], "frames0Rect_23.mat", "frames0Rect_23");
241
 
68 jakw 242
//    cv::imwrite("frames0[0].png", frames0[0]);
243
//    cv::imwrite("frames0Rect[0].png", frames0Rect[0]);
244
 
245
//    cv::imwrite("frames1[0].png", frames1[0]);
246
//    cv::imwrite("frames1Rect[0].png", frames1Rect[0]);
247
 
113 jakw 248
    // color debayer and remap
249
    cv::Mat temp;
43 jakw 250
    cv::Mat color0Rect, color1Rect;
113 jakw 251
    cv::cvtColor(frames0[0], temp, CV_BayerBG2RGB);
252
    cv::remap(temp, color0Rect, map0X, map0Y, CV_INTER_CUBIC);
253
    cv::cvtColor(frames1[0], temp, CV_BayerBG2RGB);
254
    cv::remap(temp, color1Rect, map1X, map1Y, CV_INTER_CUBIC);
41 jakw 255
 
43 jakw 256
    int frameRectRows = frames0Rect[0].rows;
257
    int frameRectCols = frames0Rect[0].cols;
42 jakw 258
 
47 jakw 259
    // occlusion masks
43 jakw 260
    cv::Mat occlusion0Rect, occlusion1Rect;
261
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0Rect);
91 jakw 262
    occlusion0Rect = occlusion0Rect > 25;
43 jakw 263
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1Rect);
91 jakw 264
    occlusion1Rect = occlusion1Rect > 25;
47 jakw 265
 
266
    // erode occlusion masks
267
    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3,3));
268
    cv::erode(occlusion0Rect, occlusion0Rect, strel);
269
    cv::erode(occlusion1Rect, occlusion1Rect, strel);
270
 
43 jakw 271
//cvtools::writeMat(occlusion0Rect, "occlusion0Rect.mat", "occlusion0Rect");
272
//cvtools::writeMat(occlusion1Rect, "occlusion1Rect.mat", "occlusion1Rect");
42 jakw 273
 
43 jakw 274
    // decode patterns
78 jakw 275
    cv::Mat code0Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
276
    cv::Mat code1Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
43 jakw 277
 
45 jakw 278
    // into gray code
43 jakw 279
    for(int i=0; i<Nbits; i++){
280
        cv::Mat bit0;
45 jakw 281
        cv::subtract(frames0Rect[i*2+2], frames0Rect[i*2+3], bit0);
43 jakw 282
        bit0 = bit0 > 0;
45 jakw 283
        bit0.convertTo(bit0, CV_32S, 1.0/255.0);
284
//      cvtools::writeMat(bit0, "bit0.mat", "bit0");
78 jakw 285
        cv::add(code0Rect, bit0*twopowi(Nbits-i-1), code0Rect, cv::Mat(), CV_32S);
43 jakw 286
        cv::Mat bit1;
45 jakw 287
        cv::subtract(frames1Rect[i*2+2], frames1Rect[i*2+3], bit1);
43 jakw 288
        bit1 = bit1 > 0;
45 jakw 289
        bit1.convertTo(bit1, CV_32S, 1.0/255.0);
78 jakw 290
        cv::add(code1Rect, bit1*twopowi(Nbits-i-1), code1Rect, cv::Mat(), CV_32S);
43 jakw 291
    }
292
 
293
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
294
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
295
 
78 jakw 296
 
45 jakw 297
//    // convert to standard binary
78 jakw 298
//    cv::Mat code0Binary(code0Rect.rows, code0Rect.cols, CV_32F);
299
//    cv::Mat code1Binary(code1Rect.rows, code1Rect.cols, CV_32F);
45 jakw 300
//    for(int r=0; r<frameRectRows; r++){
301
//        for(int c=0; c<frameRectCols; c++){
302
//            if(code0Rect.at<int>(r,c) != -1)
78 jakw 303
//                code0Binary.at<float>(r,c) = grayToBinary(code0Rect.at<int>(r,c));
45 jakw 304
//            if(code1Rect.at<int>(r,c) != -1)
78 jakw 305
//                code1Binary.at<float>(r,c) = grayToBinary(code1Rect.at<int>(r,c));
45 jakw 306
//        }
307
//    }
308
 
78 jakw 309
//cvtools::writeMat(code0Binary, "code0Binary.mat", "code0Binary");
310
//cvtools::writeMat(code1Binary, "code1Binary.mat", "code1Binary");
45 jakw 311
 
78 jakw 312
//    // threshold on vertical discontinuities (due to imperfect rectification)
313
//    cv::Mat edges0;
314
//    cv::Sobel(code0Binary, edges0, -1, 0, 1, 5);
315
//    occlusion0Rect = occlusion0Rect & (abs(edges0) < 50);
316
 
317
//    cv::Mat edges1;
318
//    cv::Sobel(code1Binary, edges1, -1, 0, 1, 5);
319
//    occlusion1Rect = occlusion1Rect & (abs(edges1) < 50);
320
 
321
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
322
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
323
 
324
    // set occluded pixels to -1
325
    for(int r=0; r<frameRectRows; r++){
326
        for(int c=0; c<frameRectCols; c++){
327
            if(occlusion0Rect.at<char>(r,c) == 0)
328
                code0Rect.at<float>(r,c) = -1;
329
            if(occlusion1Rect.at<char>(r,c) == 0)
330
                code1Rect.at<float>(r,c) = -1;
331
        }
332
    }
333
 
41 jakw 334
    // matching
42 jakw 335
    std::vector<cv::Vec2f> q0Rect, q1Rect;
43 jakw 336
    for(int row=0; row<frameRectRows; row++){
41 jakw 337
 
95 jakw 338
        // edge data structure containing [floor(column), labelLeft, labelRight, orderingRelation]
47 jakw 339
        std::vector<cv::Vec4i> edges0, edges1;
41 jakw 340
 
43 jakw 341
        // sorted, unique edges
42 jakw 342
        getEdgeLabels(code0Rect.row(row), Nbits, edges0);
343
        getEdgeLabels(code1Rect.row(row), Nbits, edges1);
41 jakw 344
 
47 jakw 345
        // match edges
346
        std::vector<cv::Vec4i> matchedEdges0, matchedEdges1;
41 jakw 347
        int i=0, j=0;
348
        while(i<edges0.size() && j<edges1.size()){
349
 
350
            if(edges0[i][3] == edges1[j][3]){
47 jakw 351
                matchedEdges0.push_back(edges0[i]);
352
                matchedEdges1.push_back(edges1[j]);
41 jakw 353
                i += 1;
354
                j += 1;
42 jakw 355
            } else if(edges0[i][3] < edges1[j][3]){
41 jakw 356
                i += 1;
42 jakw 357
            } else if(edges0[i][3] > edges1[j][3]){
41 jakw 358
                j += 1;
359
            }
360
        }
361
 
47 jakw 362
        // crude subpixel refinement
363
        // finds the intersection of linear interpolants in the positive/negative pattern
364
        for(int i=0; i<matchedEdges0.size(); i++){
41 jakw 365
 
47 jakw 366
            int level = Nbits - leastSignificantBitSet(matchedEdges0[i][1]^matchedEdges0[i][2]);
367
 
368
            // refine for camera 0
369
            float c0 = matchedEdges0[i][0];
370
            float c1 = c0+1;
371
 
372
            float pos0 = frames0Rect[2*level+2].at<char>(row, c0);
373
            float pos1 = frames0Rect[2*level+2].at<char>(row, c1);
374
            float neg0 = frames0Rect[2*level+3].at<char>(row, c0);
375
            float neg1 = frames0Rect[2*level+3].at<char>(row, c1);
376
 
377
            float col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
378
            q0Rect.push_back(cv::Point2f(col, row));
379
 
380
            // refine for camera 1
381
            c0 = matchedEdges1[i][0];
382
            c1 = c0+1;
383
 
384
            pos0 = frames1Rect[2*level+2].at<char>(row, c0);
385
            pos1 = frames1Rect[2*level+2].at<char>(row, c1);
386
            neg0 = frames1Rect[2*level+3].at<char>(row, c0);
387
            neg1 = frames1Rect[2*level+3].at<char>(row, c1);
388
 
389
            col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
390
            q1Rect.push_back(cv::Point2f(col, row));
391
 
392
        }
393
 
41 jakw 394
    }
395
 
63 jakw 396
    int nMatches = q0Rect.size();
397
 
398
    if(nMatches < 1){
399
        Q.resize(0);
400
        color.resize(0);
401
 
402
        return;
403
    }
404
 
95 jakw 405
    // retrieve color information (at integer coordinates)
41 jakw 406
    color.resize(nMatches);
407
    for(int i=0; i<nMatches; i++){
408
 
42 jakw 409
        cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0Rect[i][1], q0Rect[i][0]);
410
        cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1Rect[i][1], q1Rect[i][0]);
95 jakw 411
//        cv::Vec3b c0 = getColorSubpix(color0Rect, q0Rect[i]);
412
//        cv::Vec3b c1 = getColorSubpix(color1Rect, q0Rect[i]);
41 jakw 413
 
44 jakw 414
        color[i] = 0.5*c0 + 0.5*c1;
41 jakw 415
    }
416
 
42 jakw 417
    // triangulate points
418
    cv::Mat QMatHomogenous, QMat;
44 jakw 419
//    cv::Mat C0 = P0.clone();
420
//    cv::Mat C1 = P1.clone();
421
//    C0.colRange(0, 3) = C0.colRange(0, 3)*R0;
422
//    C1.colRange(0, 3) = C1.colRange(0, 3)*R1.t();
42 jakw 423
    cv::triangulatePoints(P0, P1, q0Rect, q1Rect, QMatHomogenous);
424
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
44 jakw 425
 
95 jakw 426
    // undo rectifying rotation
44 jakw 427
    cv::Mat R0Inv;
428
    cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
429
    QMat = R0Inv*QMat;
430
 
42 jakw 431
    cvtools::matToPoints3f(QMat, Q);
44 jakw 432
 
4 jakw 433
}