Subversion Repositories seema-scanner

Rev

Rev 44 | Rev 47 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
41 jakw 1
#include "AlgorithmGrayCode.h"
4 jakw 2
#include <cmath>
42 jakw 3
#include "cvtools.h"
4 jakw 4
 
5
#ifndef log2f
6
#define log2f(x) (log(x)/log(2.0))
7
#endif
8
 
41 jakw 9
//using namespace std;
4 jakw 10
 
11
/*
12
 * The purpose of this function is to convert an unsigned
13
 * binary number to reflected binary Gray code.
14
 *
15
 * The operator >> is shift right. The operator ^ is exclusive or.
16
 * Source: http://en.wikipedia.org/wiki/Gray_code
17
 */
18
static unsigned int binaryToGray(unsigned int num) {
19
    return (num >> 1) ^ num;
20
}
21
 
22
/*
23
 * From Wikipedia: http://en.wikipedia.org/wiki/Gray_code
24
 * The purpose of this function is to convert a reflected binary
25
 * Gray code number to a binary number.
26
 */
45 jakw 27
static unsigned int grayToBinary(unsigned int num){
28
    unsigned int mask;
29
    for(mask = num >> 1; mask != 0; mask = mask >> 1)
30
        num = num ^ mask;
4 jakw 31
    return num;
32
}
33
 
34
/*
45 jakw 35
 * Return the Nth bit of an unsigned integer number
4 jakw 36
 */
45 jakw 37
static bool getBit(int decimal, int N){
4 jakw 38
 
45 jakw 39
    return decimal & 1 << (N-1);
40
}
4 jakw 41
 
45 jakw 42
//static int get_bit(int decimal, int N){
4 jakw 43
 
45 jakw 44
//    // Shifting the 1 for N-1 bits
45
//    int constant = 1 << (N-1);
4 jakw 46
 
45 jakw 47
//    // If the bit is set, return 1
48
//    if( decimal & constant )
49
//        return 1;
50
//    else
51
//        return 0;
52
//}
53
 
54
static inline unsigned int powi(int num, unsigned int exponent){
55
 
4 jakw 56
    if(exponent == 0)
57
        return 1;
58
 
59
    float res = num;
60
    for(unsigned int i=0; i<exponent-1; i++)
61
        res *= num;
62
 
63
    return res;
64
}
65
 
45 jakw 66
static inline unsigned int twopowi(unsigned int exponent){
67
 
68
    return 1 << exponent;
69
}
70
 
36 jakw 71
// Algorithm
41 jakw 72
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows, CodingDir _dir) : Algorithm(_screenCols, _screenRows, _dir){
4 jakw 73
 
41 jakw 74
    // on/off patterns
42 jakw 75
    Nbits = ceilf(log2f((float)screenCols));
76
    N = 2 + Nbits*2;
41 jakw 77
 
78
    // all on pattern
42 jakw 79
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
80
    patterns.push_back(allOn);
41 jakw 81
 
82
    // all off pattern
42 jakw 83
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
84
    patterns.push_back(allOff);
41 jakw 85
 
4 jakw 86
 
42 jakw 87
    // horizontally encoding patterns
88
    for(unsigned int p=0; p<Nbits; p++){
89
        cv::Mat pattern(1, screenCols, CV_8UC3);
90
        cv::Mat patternInv(1, screenCols, CV_8UC3);
4 jakw 91
 
42 jakw 92
        for(unsigned int j=0; j<screenCols; j++){
4 jakw 93
 
42 jakw 94
            unsigned int jGray = binaryToGray(j);
95
            // Amplitude of channels
45 jakw 96
            int bit = (int)getBit(jGray, Nbits-p);
42 jakw 97
            pattern.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*bit,255.0*bit,255.0*bit);
98
            int invBit = bit^1;
99
            patternInv.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*invBit,255.0*invBit,255.0*invBit);
4 jakw 100
        }
42 jakw 101
        patterns.push_back(pattern);
102
        patterns.push_back(patternInv);
4 jakw 103
    }
42 jakw 104
 
105
 
4 jakw 106
}
107
 
36 jakw 108
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
4 jakw 109
    return patterns[depth];
110
}
111
 
112
 
41 jakw 113
bool sortingLarger(cv::Vec4f i,cv::Vec4f j){ return (i[3]<j[3]);}
42 jakw 114
bool sortingEqual(cv::Vec4f i,cv::Vec4f j){ return (i[3]==j[3]);}
41 jakw 115
void getEdgeLabels(const cv::Mat& scanLine, int Nbits, std::vector<cv::Vec4f>& edges){
4 jakw 116
 
41 jakw 117
    int nCols = scanLine.cols;
45 jakw 118
    const int *data = scanLine.ptr<const int>(0);
41 jakw 119
 
45 jakw 120
    int labelLeft;
121
    int labelRight = data[0];
41 jakw 122
 
43 jakw 123
    // collect edges
42 jakw 124
    for(int col=1; col<nCols; col++){
41 jakw 125
 
42 jakw 126
        labelLeft = labelRight;
127
        labelRight = data[col];
128
 
41 jakw 129
        if(labelLeft != -1 && labelRight != -1 && labelLeft != labelRight){
43 jakw 130
            int orderingRelation = (labelLeft << Nbits) + labelRight;
131
            edges.push_back(cv::Vec4f(col-0.5, labelLeft, labelRight, orderingRelation));
41 jakw 132
        }
133
    }
134
 
42 jakw 135
    // sort
41 jakw 136
    std::sort(edges.begin(), edges.end(), sortingLarger);
42 jakw 137
 
138
    // remove duplicates
139
    std::vector<cv::Vec4f>::iterator it;
140
    it = std::unique(edges.begin(), edges.end(), sortingEqual);
141
    edges.resize(std::distance(edges.begin(),it));
4 jakw 142
}
143
 
42 jakw 144
void AlgorithmGrayCode::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
4 jakw 145
 
41 jakw 146
    assert(frames0.size() == N);
147
    assert(frames1.size() == N);
4 jakw 148
 
45 jakw 149
    for(int i=0; i<1920; i++){
150
        std::cout << i << " " << binaryToGray(i) << " " << grayToBinary(binaryToGray(i)) << std::endl;
151
    }
152
 
153
 
42 jakw 154
    int frameRows = frames0[0].rows;
155
    int frameCols = frames0[0].cols;
156
 
157
    // rectifying homographies (rotation+projections)
158
    cv::Size frameSize(frameCols, frameRows);
159
    cv::Mat R, T;
160
    // stereoRectify segfaults unless R is double precision
161
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
162
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
163
    cv::Mat R0, R1, P0, P1, QRect;
164
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
165
 
43 jakw 166
    std::cout << "R0" << std::endl << R0 << std::endl;
167
    std::cout << "P0" << std::endl << P0 << std::endl;
168
    std::cout << "R1" << std::endl << R1 << std::endl;
169
    std::cout << "P1" << std::endl << P1 << std::endl;
170
 
41 jakw 171
    // interpolation maps
172
    cv::Mat map0X, map0Y, map1X, map1Y;
42 jakw 173
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
174
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
41 jakw 175
 
43 jakw 176
    // gray-scale and remap
177
    std::vector<cv::Mat> frames0Rect(N);
178
    std::vector<cv::Mat> frames1Rect(N);
179
    for(int i=0; i<N; i++){
180
        cv::Mat temp;
181
        cv::cvtColor(frames0[i], temp, CV_RGB2GRAY);
182
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
183
        cv::cvtColor(frames1[i], temp, CV_RGB2GRAY);
184
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
185
    }
41 jakw 186
 
43 jakw 187
    // color remaps
188
    cv::Mat color0Rect, color1Rect;
189
    cv::remap(frames0[0], color0Rect, map0X, map0Y, CV_INTER_CUBIC);
44 jakw 190
    cv::remap(frames1[0], color1Rect, map1X, map1Y, CV_INTER_CUBIC);
41 jakw 191
 
43 jakw 192
    int frameRectRows = frames0Rect[0].rows;
193
    int frameRectCols = frames0Rect[0].cols;
42 jakw 194
 
43 jakw 195
    // occlusion maps
196
    cv::Mat occlusion0Rect, occlusion1Rect;
197
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0Rect);
198
    occlusion0Rect = occlusion0Rect > 50;
199
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1Rect);
200
    occlusion1Rect = occlusion1Rect > 50;
201
//cvtools::writeMat(occlusion0Rect, "occlusion0Rect.mat", "occlusion0Rect");
202
//cvtools::writeMat(occlusion1Rect, "occlusion1Rect.mat", "occlusion1Rect");
42 jakw 203
 
43 jakw 204
    // decode patterns
45 jakw 205
    cv::Mat code0Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(-1));
206
    cv::Mat code1Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(-1));
207
    cv::add(code0Rect, 1, code0Rect, occlusion0Rect, CV_32S);
208
    cv::add(code1Rect, 1, code1Rect, occlusion1Rect, CV_32S);
43 jakw 209
 
45 jakw 210
    // into gray code
43 jakw 211
    for(int i=0; i<Nbits; i++){
212
        cv::Mat bit0;
45 jakw 213
        cv::subtract(frames0Rect[i*2+2], frames0Rect[i*2+3], bit0);
43 jakw 214
        bit0 = bit0 > 0;
45 jakw 215
        bit0.convertTo(bit0, CV_32S, 1.0/255.0);
216
//      cvtools::writeMat(bit0, "bit0.mat", "bit0");
217
        cv::add(code0Rect, bit0*twopowi(Nbits-i-1), code0Rect, occlusion0Rect, CV_32S);
43 jakw 218
        cv::Mat bit1;
45 jakw 219
        cv::subtract(frames1Rect[i*2+2], frames1Rect[i*2+3], bit1);
43 jakw 220
        bit1 = bit1 > 0;
45 jakw 221
        bit1.convertTo(bit1, CV_32S, 1.0/255.0);
222
        cv::add(code1Rect, bit1*twopowi(Nbits-i-1), code1Rect, occlusion1Rect, CV_32S);
43 jakw 223
    }
224
 
225
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
226
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
227
 
45 jakw 228
//    // convert to standard binary
229
//    for(int r=0; r<frameRectRows; r++){
230
//        for(int c=0; c<frameRectCols; c++){
231
//            if(code0Rect.at<int>(r,c) != -1)
232
//                code0Rect.at<int>(r,c) = grayToBinary(code0Rect.at<int>(r,c));
233
//            if(code1Rect.at<int>(r,c) != -1)
234
//                code1Rect.at<int>(r,c) = grayToBinary(code1Rect.at<int>(r,c));
235
//        }
236
//    }
237
 
238
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
239
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
240
 
41 jakw 241
    // matching
42 jakw 242
    std::vector<cv::Vec2f> q0Rect, q1Rect;
43 jakw 243
    for(int row=0; row<frameRectRows; row++){
41 jakw 244
 
245
        std::vector<cv::Vec4f> edges0, edges1;
246
 
43 jakw 247
        // sorted, unique edges
42 jakw 248
        getEdgeLabels(code0Rect.row(row), Nbits, edges0);
249
        getEdgeLabels(code1Rect.row(row), Nbits, edges1);
41 jakw 250
 
43 jakw 251
        // subpixel refinement
252
        // ...
253
 
41 jakw 254
        int i=0, j=0;
255
        while(i<edges0.size() && j<edges1.size()){
256
 
257
            if(edges0[i][3] == edges1[j][3]){
42 jakw 258
                q0Rect.push_back(cv::Vec2f(edges0[i][0], row));
259
                q1Rect.push_back(cv::Vec2f(edges1[j][0], row));
41 jakw 260
                i += 1;
261
                j += 1;
42 jakw 262
            } else if(edges0[i][3] < edges1[j][3]){
41 jakw 263
                i += 1;
42 jakw 264
            } else if(edges0[i][3] > edges1[j][3]){
41 jakw 265
                j += 1;
266
            }
267
        }
268
 
269
 
270
    }
271
 
272
    // retrieve color information
42 jakw 273
    int nMatches = q0Rect.size();
41 jakw 274
    color.resize(nMatches);
275
    for(int i=0; i<nMatches; i++){
276
 
42 jakw 277
        cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0Rect[i][1], q0Rect[i][0]);
278
        cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1Rect[i][1], q1Rect[i][0]);
41 jakw 279
 
44 jakw 280
        color[i] = 0.5*c0 + 0.5*c1;
41 jakw 281
    }
282
 
42 jakw 283
    // triangulate points
284
    cv::Mat QMatHomogenous, QMat;
44 jakw 285
//    cv::Mat C0 = P0.clone();
286
//    cv::Mat C1 = P1.clone();
287
//    C0.colRange(0, 3) = C0.colRange(0, 3)*R0;
288
//    C1.colRange(0, 3) = C1.colRange(0, 3)*R1.t();
42 jakw 289
    cv::triangulatePoints(P0, P1, q0Rect, q1Rect, QMatHomogenous);
290
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
44 jakw 291
 
292
    // undo rectification
293
    cv::Mat R0Inv;
294
    cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
295
    QMat = R0Inv*QMat;
296
 
42 jakw 297
    cvtools::matToPoints3f(QMat, Q);
44 jakw 298
 
4 jakw 299
}