Subversion Repositories seema-scanner

Rev

Rev 70 | Rev 79 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
41 jakw 1
#include "AlgorithmGrayCode.h"
4 jakw 2
#include <cmath>
42 jakw 3
#include "cvtools.h"
4 jakw 4
 
5
#ifndef log2f
6
#define log2f(x) (log(x)/log(2.0))
7
#endif
8
 
41 jakw 9
//using namespace std;
4 jakw 10
 
11
/*
12
 * The purpose of this function is to convert an unsigned
13
 * binary number to reflected binary Gray code.
14
 *
15
 * The operator >> is shift right. The operator ^ is exclusive or.
16
 * Source: http://en.wikipedia.org/wiki/Gray_code
17
 */
18
static unsigned int binaryToGray(unsigned int num) {
19
    return (num >> 1) ^ num;
20
}
21
 
22
/*
23
 * From Wikipedia: http://en.wikipedia.org/wiki/Gray_code
24
 * The purpose of this function is to convert a reflected binary
25
 * Gray code number to a binary number.
26
 */
45 jakw 27
static unsigned int grayToBinary(unsigned int num){
28
    unsigned int mask;
29
    for(mask = num >> 1; mask != 0; mask = mask >> 1)
30
        num = num ^ mask;
4 jakw 31
    return num;
32
}
33
 
34
/*
45 jakw 35
 * Return the Nth bit of an unsigned integer number
4 jakw 36
 */
45 jakw 37
static bool getBit(int decimal, int N){
4 jakw 38
 
45 jakw 39
    return decimal & 1 << (N-1);
40
}
4 jakw 41
 
47 jakw 42
/*
43
 * Return the number of bits set in an integer
44
 */
45
static int countBits(int n) {
46
  unsigned int c; // c accumulates the total bits set in v
47
  for (c = 0; n>0; c++)
48
    n &= n - 1; // clear the least significant bit set
49
  return c;
50
}
51
 
52
/*
53
 * Return the position of the least significant bit that is set
54
 */
55
static int leastSignificantBitSet(int x){
56
  if(x == 0)
57
      return 0;
58
 
59
  int val = 1;
60
  while(x>>=1)
61
      val++;
62
 
63
  return val;
64
}
65
 
45 jakw 66
//static int get_bit(int decimal, int N){
4 jakw 67
 
45 jakw 68
//    // Shifting the 1 for N-1 bits
69
//    int constant = 1 << (N-1);
4 jakw 70
 
45 jakw 71
//    // If the bit is set, return 1
72
//    if( decimal & constant )
73
//        return 1;
74
//    else
75
//        return 0;
76
//}
77
 
78
static inline unsigned int powi(int num, unsigned int exponent){
79
 
4 jakw 80
    if(exponent == 0)
81
        return 1;
82
 
83
    float res = num;
84
    for(unsigned int i=0; i<exponent-1; i++)
85
        res *= num;
86
 
87
    return res;
88
}
89
 
45 jakw 90
static inline unsigned int twopowi(unsigned int exponent){
91
 
92
    return 1 << exponent;
93
}
94
 
36 jakw 95
// Algorithm
70 jakw 96
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
4 jakw 97
 
42 jakw 98
    Nbits = ceilf(log2f((float)screenCols));
99
    N = 2 + Nbits*2;
41 jakw 100
 
101
    // all on pattern
42 jakw 102
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
103
    patterns.push_back(allOn);
41 jakw 104
 
105
    // all off pattern
42 jakw 106
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
107
    patterns.push_back(allOff);
41 jakw 108
 
4 jakw 109
 
42 jakw 110
    // horizontally encoding patterns
111
    for(unsigned int p=0; p<Nbits; p++){
112
        cv::Mat pattern(1, screenCols, CV_8UC3);
113
        cv::Mat patternInv(1, screenCols, CV_8UC3);
4 jakw 114
 
42 jakw 115
        for(unsigned int j=0; j<screenCols; j++){
4 jakw 116
 
42 jakw 117
            unsigned int jGray = binaryToGray(j);
118
            // Amplitude of channels
45 jakw 119
            int bit = (int)getBit(jGray, Nbits-p);
42 jakw 120
            pattern.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*bit,255.0*bit,255.0*bit);
121
            int invBit = bit^1;
122
            patternInv.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*invBit,255.0*invBit,255.0*invBit);
4 jakw 123
        }
42 jakw 124
        patterns.push_back(pattern);
125
        patterns.push_back(patternInv);
4 jakw 126
    }
42 jakw 127
 
128
 
4 jakw 129
}
130
 
36 jakw 131
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
4 jakw 132
    return patterns[depth];
133
}
134
 
135
 
47 jakw 136
bool sortingLarger(cv::Vec4i i,cv::Vec4i j){ return (i[3]<j[3]);}
137
bool sortingEqual(cv::Vec4i i,cv::Vec4i j){ return (i[3]==j[3]);}
138
void getEdgeLabels(const cv::Mat& scanLine, int Nbits, std::vector<cv::Vec4i>& edges){
4 jakw 139
 
41 jakw 140
    int nCols = scanLine.cols;
45 jakw 141
    const int *data = scanLine.ptr<const int>(0);
41 jakw 142
 
45 jakw 143
    int labelLeft;
144
    int labelRight = data[0];
41 jakw 145
 
43 jakw 146
    // collect edges
42 jakw 147
    for(int col=1; col<nCols; col++){
41 jakw 148
 
42 jakw 149
        labelLeft = labelRight;
150
        labelRight = data[col];
151
 
47 jakw 152
        // labels need to non-background, and differ in exactly one bit
153
        if(labelLeft != -1 && labelRight != -1 && countBits(labelLeft^labelRight) == 1){
43 jakw 154
            int orderingRelation = (labelLeft << Nbits) + labelRight;
47 jakw 155
            // store left label column
156
            edges.push_back(cv::Vec4i(col-1, labelLeft, labelRight, orderingRelation));
41 jakw 157
        }
158
    }
159
 
42 jakw 160
    // sort
41 jakw 161
    std::sort(edges.begin(), edges.end(), sortingLarger);
42 jakw 162
 
163
    // remove duplicates
47 jakw 164
    std::vector<cv::Vec4i>::iterator it;
42 jakw 165
    it = std::unique(edges.begin(), edges.end(), sortingEqual);
166
    edges.resize(std::distance(edges.begin(),it));
4 jakw 167
}
168
 
42 jakw 169
void AlgorithmGrayCode::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
4 jakw 170
 
41 jakw 171
    assert(frames0.size() == N);
172
    assert(frames1.size() == N);
4 jakw 173
 
47 jakw 174
//    for(int i=0; i<1920; i++){
175
//        std::cout << i << " " << binaryToGray(i) << " " << grayToBinary(binaryToGray(i)) << std::endl;
176
//    }
45 jakw 177
 
42 jakw 178
    int frameRows = frames0[0].rows;
179
    int frameCols = frames0[0].cols;
180
 
181
    // rectifying homographies (rotation+projections)
182
    cv::Size frameSize(frameCols, frameRows);
183
    cv::Mat R, T;
184
    // stereoRectify segfaults unless R is double precision
185
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
186
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
187
    cv::Mat R0, R1, P0, P1, QRect;
188
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
189
 
47 jakw 190
//    std::cout << "R0" << std::endl << R0 << std::endl;
191
//    std::cout << "P0" << std::endl << P0 << std::endl;
192
//    std::cout << "R1" << std::endl << R1 << std::endl;
193
//    std::cout << "P1" << std::endl << P1 << std::endl;
43 jakw 194
 
41 jakw 195
    // interpolation maps
196
    cv::Mat map0X, map0Y, map1X, map1Y;
42 jakw 197
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
198
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
41 jakw 199
 
43 jakw 200
    // gray-scale and remap
201
    std::vector<cv::Mat> frames0Rect(N);
202
    std::vector<cv::Mat> frames1Rect(N);
203
    for(int i=0; i<N; i++){
204
        cv::Mat temp;
205
        cv::cvtColor(frames0[i], temp, CV_RGB2GRAY);
47 jakw 206
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_CUBIC);
43 jakw 207
        cv::cvtColor(frames1[i], temp, CV_RGB2GRAY);
47 jakw 208
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_CUBIC);
43 jakw 209
    }
41 jakw 210
 
78 jakw 211
//    cvtools::writeMat(frames0Rect[0], "frames0Rect_0.mat", "frames0Rect_0");
212
//    cvtools::writeMat(frames0Rect[1], "frames0Rect_1.mat", "frames0Rect_1");
68 jakw 213
 
78 jakw 214
//    cvtools::writeMat(frames0Rect[22], "frames0Rect_22.mat", "frames0Rect_22");
215
//    cvtools::writeMat(frames0Rect[23], "frames0Rect_23.mat", "frames0Rect_23");
216
 
68 jakw 217
//    cv::imwrite("frames0[0].png", frames0[0]);
218
//    cv::imwrite("frames0Rect[0].png", frames0Rect[0]);
219
 
220
//    cv::imwrite("frames1[0].png", frames1[0]);
221
//    cv::imwrite("frames1Rect[0].png", frames1Rect[0]);
222
 
47 jakw 223
 
43 jakw 224
    // color remaps
225
    cv::Mat color0Rect, color1Rect;
226
    cv::remap(frames0[0], color0Rect, map0X, map0Y, CV_INTER_CUBIC);
44 jakw 227
    cv::remap(frames1[0], color1Rect, map1X, map1Y, CV_INTER_CUBIC);
41 jakw 228
 
43 jakw 229
    int frameRectRows = frames0Rect[0].rows;
230
    int frameRectCols = frames0Rect[0].cols;
42 jakw 231
 
47 jakw 232
    // occlusion masks
43 jakw 233
    cv::Mat occlusion0Rect, occlusion1Rect;
234
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0Rect);
235
    occlusion0Rect = occlusion0Rect > 50;
236
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1Rect);
237
    occlusion1Rect = occlusion1Rect > 50;
47 jakw 238
 
239
    // erode occlusion masks
240
    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3,3));
241
    cv::erode(occlusion0Rect, occlusion0Rect, strel);
242
    cv::erode(occlusion1Rect, occlusion1Rect, strel);
243
 
43 jakw 244
//cvtools::writeMat(occlusion0Rect, "occlusion0Rect.mat", "occlusion0Rect");
245
//cvtools::writeMat(occlusion1Rect, "occlusion1Rect.mat", "occlusion1Rect");
42 jakw 246
 
43 jakw 247
    // decode patterns
78 jakw 248
    cv::Mat code0Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
249
    cv::Mat code1Rect(frameRectRows, frameRectCols, CV_32S, cv::Scalar(0));
43 jakw 250
 
45 jakw 251
    // into gray code
43 jakw 252
    for(int i=0; i<Nbits; i++){
253
        cv::Mat bit0;
45 jakw 254
        cv::subtract(frames0Rect[i*2+2], frames0Rect[i*2+3], bit0);
43 jakw 255
        bit0 = bit0 > 0;
45 jakw 256
        bit0.convertTo(bit0, CV_32S, 1.0/255.0);
257
//      cvtools::writeMat(bit0, "bit0.mat", "bit0");
78 jakw 258
        cv::add(code0Rect, bit0*twopowi(Nbits-i-1), code0Rect, cv::Mat(), CV_32S);
43 jakw 259
        cv::Mat bit1;
45 jakw 260
        cv::subtract(frames1Rect[i*2+2], frames1Rect[i*2+3], bit1);
43 jakw 261
        bit1 = bit1 > 0;
45 jakw 262
        bit1.convertTo(bit1, CV_32S, 1.0/255.0);
78 jakw 263
        cv::add(code1Rect, bit1*twopowi(Nbits-i-1), code1Rect, cv::Mat(), CV_32S);
43 jakw 264
    }
265
 
266
//cvtools::writeMat(code0Rect, "code0Rect.mat", "code0Rect");
267
//cvtools::writeMat(code1Rect, "code1Rect.mat", "code1Rect");
268
 
78 jakw 269
 
45 jakw 270
//    // convert to standard binary
78 jakw 271
//    cv::Mat code0Binary(code0Rect.rows, code0Rect.cols, CV_32F);
272
//    cv::Mat code1Binary(code1Rect.rows, code1Rect.cols, CV_32F);
45 jakw 273
//    for(int r=0; r<frameRectRows; r++){
274
//        for(int c=0; c<frameRectCols; c++){
275
//            if(code0Rect.at<int>(r,c) != -1)
78 jakw 276
//                code0Binary.at<float>(r,c) = grayToBinary(code0Rect.at<int>(r,c));
45 jakw 277
//            if(code1Rect.at<int>(r,c) != -1)
78 jakw 278
//                code1Binary.at<float>(r,c) = grayToBinary(code1Rect.at<int>(r,c));
45 jakw 279
//        }
280
//    }
281
 
78 jakw 282
//cvtools::writeMat(code0Binary, "code0Binary.mat", "code0Binary");
283
//cvtools::writeMat(code1Binary, "code1Binary.mat", "code1Binary");
45 jakw 284
 
78 jakw 285
//    // threshold on vertical discontinuities (due to imperfect rectification)
286
//    cv::Mat edges0;
287
//    cv::Sobel(code0Binary, edges0, -1, 0, 1, 5);
288
//    occlusion0Rect = occlusion0Rect & (abs(edges0) < 50);
289
 
290
//    cv::Mat edges1;
291
//    cv::Sobel(code1Binary, edges1, -1, 0, 1, 5);
292
//    occlusion1Rect = occlusion1Rect & (abs(edges1) < 50);
293
 
294
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
295
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
296
 
297
    // set occluded pixels to -1
298
    for(int r=0; r<frameRectRows; r++){
299
        for(int c=0; c<frameRectCols; c++){
300
            if(occlusion0Rect.at<char>(r,c) == 0)
301
                code0Rect.at<float>(r,c) = -1;
302
            if(occlusion1Rect.at<char>(r,c) == 0)
303
                code1Rect.at<float>(r,c) = -1;
304
        }
305
    }
306
 
41 jakw 307
    // matching
42 jakw 308
    std::vector<cv::Vec2f> q0Rect, q1Rect;
43 jakw 309
    for(int row=0; row<frameRectRows; row++){
41 jakw 310
 
47 jakw 311
        std::vector<cv::Vec4i> edges0, edges1;
41 jakw 312
 
43 jakw 313
        // sorted, unique edges
42 jakw 314
        getEdgeLabels(code0Rect.row(row), Nbits, edges0);
315
        getEdgeLabels(code1Rect.row(row), Nbits, edges1);
41 jakw 316
 
47 jakw 317
        // match edges
318
        std::vector<cv::Vec4i> matchedEdges0, matchedEdges1;
41 jakw 319
        int i=0, j=0;
320
        while(i<edges0.size() && j<edges1.size()){
321
 
322
            if(edges0[i][3] == edges1[j][3]){
47 jakw 323
                matchedEdges0.push_back(edges0[i]);
324
                matchedEdges1.push_back(edges1[j]);
41 jakw 325
                i += 1;
326
                j += 1;
42 jakw 327
            } else if(edges0[i][3] < edges1[j][3]){
41 jakw 328
                i += 1;
42 jakw 329
            } else if(edges0[i][3] > edges1[j][3]){
41 jakw 330
                j += 1;
331
            }
332
        }
333
 
47 jakw 334
        // crude subpixel refinement
335
        // finds the intersection of linear interpolants in the positive/negative pattern
336
        for(int i=0; i<matchedEdges0.size(); i++){
41 jakw 337
 
47 jakw 338
            int level = Nbits - leastSignificantBitSet(matchedEdges0[i][1]^matchedEdges0[i][2]);
339
 
340
            // refine for camera 0
341
            float c0 = matchedEdges0[i][0];
342
            float c1 = c0+1;
343
 
344
            float pos0 = frames0Rect[2*level+2].at<char>(row, c0);
345
            float pos1 = frames0Rect[2*level+2].at<char>(row, c1);
346
            float neg0 = frames0Rect[2*level+3].at<char>(row, c0);
347
            float neg1 = frames0Rect[2*level+3].at<char>(row, c1);
348
 
349
            float col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
350
            q0Rect.push_back(cv::Point2f(col, row));
351
 
352
            // refine for camera 1
353
            c0 = matchedEdges1[i][0];
354
            c1 = c0+1;
355
 
356
            pos0 = frames1Rect[2*level+2].at<char>(row, c0);
357
            pos1 = frames1Rect[2*level+2].at<char>(row, c1);
358
            neg0 = frames1Rect[2*level+3].at<char>(row, c0);
359
            neg1 = frames1Rect[2*level+3].at<char>(row, c1);
360
 
361
            col = c0 + (pos0 - neg0)/(neg1 - neg0 - pos1 + pos0);
362
            q1Rect.push_back(cv::Point2f(col, row));
363
 
364
        }
365
 
41 jakw 366
    }
367
 
63 jakw 368
    int nMatches = q0Rect.size();
369
 
370
    if(nMatches < 1){
371
        Q.resize(0);
372
        color.resize(0);
373
 
374
        return;
375
    }
376
 
41 jakw 377
    // retrieve color information
378
    color.resize(nMatches);
379
    for(int i=0; i<nMatches; i++){
380
 
42 jakw 381
        cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0Rect[i][1], q0Rect[i][0]);
382
        cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1Rect[i][1], q1Rect[i][0]);
41 jakw 383
 
44 jakw 384
        color[i] = 0.5*c0 + 0.5*c1;
41 jakw 385
    }
386
 
42 jakw 387
    // triangulate points
388
    cv::Mat QMatHomogenous, QMat;
44 jakw 389
//    cv::Mat C0 = P0.clone();
390
//    cv::Mat C1 = P1.clone();
391
//    C0.colRange(0, 3) = C0.colRange(0, 3)*R0;
392
//    C1.colRange(0, 3) = C1.colRange(0, 3)*R1.t();
42 jakw 393
    cv::triangulatePoints(P0, P1, q0Rect, q1Rect, QMatHomogenous);
394
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
44 jakw 395
 
396
    // undo rectification
397
    cv::Mat R0Inv;
398
    cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
399
    QMat = R0Inv*QMat;
400
 
42 jakw 401
    cvtools::matToPoints3f(QMat, Q);
44 jakw 402
 
4 jakw 403
}