Rev 41 | Go to most recent revision | Blame | Last modification | View Log | RSS feed
#include "AlgorithmPhaseShift.h"
#include <math.h>
#include "cvtools.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
static unsigned int nPhases = 8;
// Algorithm
static cv::Mat computePhaseVector(unsigned int length, float phase, float pitch){
cv::Mat phaseVector(length, 1, CV_8UC3);
//phaseVector.setTo(0);
const float pi = M_PI;
// Loop through vector
for(int i=0; i<phaseVector.rows; i++){
// Amplitude of channels
float amp = 0.5*(1+cos(2*pi*i/pitch + phase));
phaseVector.at<cv::Vec3b>(i, 0) = cv::Vec3b(255.0*amp,255.0*amp,255.0*amp);
}
return phaseVector;
}
AlgorithmPhaseShift::AlgorithmPhaseShift(unsigned int _screenCols, unsigned int _screenRows, CodingDir _dir) : Algorithm(_screenCols, _screenRows, _dir){
// Set N
if(dir == CodingDirBoth)
this->N = 12;
else
this->N = 6;
// Precompute encoded patterns
const float pi = M_PI;
if(dir & CodingDirHorizontal){
// Horizontally encoding patterns
for(unsigned int i=0; i<3; i++){
float phase = 2.0*pi/3.0 * (1.0 - (float)i);
float pitch = (float)screenCols/(float)nPhases;
cv::Mat patternI(1,1,CV_8U);
patternI = computePhaseVector(screenCols, phase, pitch);
patternI = patternI.t();
patterns.push_back(patternI);
}
// Phase cue patterns
for(unsigned int i=0; i<3; i++){
float phase = 2.0*pi/3.0 * (1.0 - (float)i);
float pitch = screenCols;
cv::Mat patternI;
patternI = computePhaseVector(screenCols, phase, pitch);
patternI = patternI.t();
patterns.push_back(patternI);
}
}
if(dir & CodingDirVertical){
// Precompute vertically encoding patterns
for(unsigned int i=0; i<3; i++){
float phase = 2.0*pi/3.0 * (1.0 - (float)i);
float pitch = (float)screenRows/(float)nPhases;
cv::Mat patternI;
patternI = computePhaseVector(screenRows, phase, pitch);
patterns.push_back(patternI);
}
// Precompute vertically phase cue patterns
for(unsigned int i=0; i<3; i++){
float phase = 2.0*pi/3.0 * (1.0 - (float)i);
float pitch = screenRows;
cv::Mat patternI;
patternI = computePhaseVector(screenRows, phase, pitch);
patterns.push_back(patternI);
}
}
}
cv::Mat AlgorithmPhaseShift::getEncodingPattern(unsigned int depth){
return patterns[depth];
}
static cv::Mat absolutePhase(cv::Mat _I1, cv::Mat _I2, cv::Mat _I3){
const float pi = M_PI;
// Mat_ wrapper for easier indexing
cv::Mat_<float> I1(_I1);
cv::Mat_<float> I2(_I2);
cv::Mat_<float> I3(_I3);
cv::Mat absPhase(I1.size(), CV_32F);
for(int i = 0; i < absPhase.rows; i++){
for(int j = 0; j < absPhase.cols; j++){
float phase = atan2(sqrt(3.0) * (I1(i,j)-I3(i,j)), I1(i,j) + I3(i,j) - 2.0*I2(i,j)) + pi;
absPhase.at<float>(i,j) = phase;
}
}
//absPhase.addref();
return absPhase;
}
void AlgorithmPhaseShift::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
}