Subversion Repositories seema-scanner

Rev

Rev 121 | Rev 129 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 121 Rev 128
1
#include "AlgorithmPhaseShift.h"
1
#include "AlgorithmPhaseShiftThreeFreq.h"
2
#include <math.h>
2
#include <math.h>
3
 
3
 
4
#include "cvtools.h"
4
#include "cvtools.h"
5
 
5
 
6
#ifndef M_PI
6
#ifndef M_PI
7
    #define M_PI 3.14159265358979323846
7
    #define M_PI 3.14159265358979323846
8
#endif
8
#endif
9
 
9
 
10
static unsigned int nStepsPrimary = 24; // number of shifts/steps in primary
10
static unsigned int nStepsPrimary = 16; // number of shifts/steps in primary
11
static unsigned int nStepsSecondary = 12; // number of shifts/steps in secondary
11
static unsigned int nStepsSecondary = 6; // number of shifts/steps in secondary
-
 
12
static unsigned int nStepsTertiary = 6; // number of shifts/steps in secondary
12
static float periodPrimary = 24; // primary period
13
static float periodPrimary = 32; // primary period
13
 
14
 
14
// Algorithm
15
// Algorithm
15
static cv::Mat computePhaseVector(unsigned int length, float phase, float pitch){
16
static cv::Mat computePhaseVector(unsigned int length, float phase, float pitch){
16
 
17
 
17
    cv::Mat phaseVector(length, 1, CV_8UC3);
18
    cv::Mat phaseVector(length, 1, CV_8UC3);
18
    //phaseVector.setTo(0);
19
    //phaseVector.setTo(0);
19
 
20
 
20
    const float pi = M_PI;
21
    const float pi = M_PI;
21
 
22
 
22
    // Loop through vector
23
    // Loop through vector
23
    for(int i=0; i<phaseVector.rows; i++){
24
    for(int i=0; i<phaseVector.rows; i++){
24
        // Amplitude of channels
25
        // Amplitude of channels
25
        float amp = 0.5*(1+cos(2*pi*i/pitch - phase));
26
        float amp = 0.5*(1+cos(2*pi*i/pitch - phase));
26
        phaseVector.at<cv::Vec3b>(i, 0) = cv::Vec3b(255.0*amp,255.0*amp,255.0*amp);
27
        phaseVector.at<cv::Vec3b>(i, 0) = cv::Vec3b(255.0*amp,255.0*amp,255.0*amp);
27
    }
28
    }
28
 
29
 
29
    return phaseVector;
30
    return phaseVector;
30
}
31
}
31
 
32
 
32
AlgorithmPhaseShift::AlgorithmPhaseShift(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
33
AlgorithmPhaseShiftThreeFreq::AlgorithmPhaseShiftThreeFreq(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
33
 
34
 
34
    // Set N
35
    // Set N
35
    N = 2+nStepsPrimary+nStepsSecondary;
36
    N = 2+nStepsPrimary+nStepsSecondary+nStepsTertiary;
36
 
37
 
37
    // Determine the secondary (wider) period
38
    // Determine the secondary (wider) period
38
    float pSecondary = (screenCols*periodPrimary)/(screenCols-periodPrimary);
39
    float pSecondary = (screenCols*periodPrimary)/(screenCols-periodPrimary);
39
 
40
 
40
    // all on pattern
41
    // all on pattern
41
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
42
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
42
    patterns.push_back(allOn);
43
    patterns.push_back(allOn);
43
 
44
 
44
    // all off pattern
45
    // all off pattern
45
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
46
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
46
    patterns.push_back(allOff);
47
    patterns.push_back(allOff);
47
 
48
 
48
    // Precompute encoded patterns
49
    // Precompute encoded patterns
49
    const float pi = M_PI;
50
    const float pi = M_PI;
50
 
51
 
51
    // Primary encoding patterns
52
    // Primary encoding patterns
52
    for(unsigned int i=0; i<nStepsPrimary; i++){
53
    for(unsigned int i=0; i<nStepsPrimary; i++){
53
        float phase = 2.0*pi/nStepsPrimary * i;
54
        float phase = 2.0*pi/nStepsPrimary * i;
54
        float pitch = periodPrimary;
55
        float pitch = periodPrimary;
55
        cv::Mat patternI(1,1,CV_8U);
56
        cv::Mat patternI(1,1,CV_8U);
56
        patternI = computePhaseVector(screenCols, phase, pitch);
57
        patternI = computePhaseVector(screenCols, phase, pitch);
57
        patterns.push_back(patternI.t());
58
        patterns.push_back(patternI.t());
58
    }
59
    }
59
 
60
 
60
    // Secondary encoding patterns
61
    // Secondary encoding patterns
61
    for(unsigned int i=0; i<nStepsSecondary; i++){
62
    for(unsigned int i=0; i<nStepsSecondary; i++){
62
        float phase = 2.0*pi/nStepsSecondary * i;
63
        float phase = 2.0*pi/nStepsSecondary * i;
63
        float pitch = pSecondary;
64
        float pitch = pSecondary;
64
        cv::Mat patternI(1,1,CV_8U);
65
        cv::Mat patternI(1,1,CV_8U);
65
        patternI = computePhaseVector(screenCols, phase, pitch);
66
        patternI = computePhaseVector(screenCols, phase, pitch);
66
        patterns.push_back(patternI.t());
67
        patterns.push_back(patternI.t());
67
    }
68
    }
-
 
69
    // Tertiary encoding patterns
-
 
70
    for(unsigned int i=0; i<nStepsTertiary; i++){
-
 
71
        float phase = 2.0*pi/nStepsTertiary * i;
-
 
72
        float pitch = pTertiary;
-
 
73
        cv::Mat patternI(1,1,CV_8U);
-
 
74
        patternI = computePhaseVector(screenCols, phase, pitch);
-
 
75
        patterns.push_back(patternI.t());
68
 
76
    }
69
 
77
 
70
}
78
}
71
 
79
 
72
cv::Mat AlgorithmPhaseShift::getEncodingPattern(unsigned int depth){
80
cv::Mat AlgorithmPhaseShiftThreeFreq::getEncodingPattern(unsigned int depth){
73
    return patterns[depth];
81
    return patterns[depth];
74
}
82
}
75
 
83
 
76
 
84
 
77
// Absolute phase from 3 frames
85
// Absolute phase from 3 frames
78
cv::Mat getPhase(const cv::Mat I1, const cv::Mat I2, const cv::Mat I3){
86
static cv::Mat getPhase(const cv::Mat I1, const cv::Mat I2, const cv::Mat I3){
79
 
87
 
80
    cv::Mat_<float> I1_(I1);
88
    cv::Mat_<float> I1_(I1);
81
    cv::Mat_<float> I2_(I2);
89
    cv::Mat_<float> I2_(I2);
82
    cv::Mat_<float> I3_(I3);
90
    cv::Mat_<float> I3_(I3);
83
 
91
 
84
    cv::Mat phase;
92
    cv::Mat phase;
85
 
93
 
86
    // One call approach
94
    // One call approach
87
    cv::phase(2.0*I1_-I3_-I2_, sqrt(3.0)*(I2_-I3_), phase);
95
    cv::phase(2.0*I1_-I3_-I2_, sqrt(3.0)*(I2_-I3_), phase);
88
    return phase;
96
    return phase;
89
 
97
 
90
}
98
}
91
 
99
 
92
// Phase unwrapping by means of a phase cue
100
// Phase unwrapping by means of a phase cue
93
cv::Mat unwrapWithCue(const cv::Mat up, const cv::Mat upCue, float nPhases){
101
static cv::Mat unwrapWithCue(const cv::Mat up, const cv::Mat upCue, float nPhases){
94
 
102
 
95
    const float pi = M_PI;
103
    const float pi = M_PI;
96
 
104
 
97
    // Determine number of jumps
105
    // Determine number of jumps
98
    cv::Mat P = (upCue*nPhases-up)/(2*pi);
106
    cv::Mat P = (upCue*nPhases-up)/(2.0*pi);
99
 
107
 
100
    // Round to integers
108
    // Round to integers
101
    P.convertTo(P, CV_8U);
109
    P.convertTo(P, CV_8U);
102
    P.convertTo(P, CV_32F);
110
    P.convertTo(P, CV_32F);
103
 
111
 
104
    // Add to phase
112
    // Add to phase
105
    cv::Mat upUnwrapped = up + P*2*pi;
113
    cv::Mat upUnwrapped = up + P*2*pi;
106
 
114
 
107
    // Scale to range [0; 2pi]
115
    // Scale to range [0; 2pi]
108
    upUnwrapped *= 1.0/nPhases;
116
    upUnwrapped *= 1.0/nPhases;
109
 
117
 
110
    return upUnwrapped;
118
    return upUnwrapped;
111
}
119
}
112
 
120
 
113
// Absolute phase and magnitude from N frames
121
// Absolute phase and magnitude from N frames
114
std::vector<cv::Mat> getDFTComponents(const std::vector<cv::Mat> frames){
122
static std::vector<cv::Mat> getDFTComponents(const std::vector<cv::Mat> frames){
115
 
123
 
116
    unsigned int N = frames.size();
124
    unsigned int N = frames.size();
117
 
125
 
118
//    std::vector<cv::Mat> framesReverse = frames;
126
//    std::vector<cv::Mat> framesReverse = frames;
119
//    std::reverse(framesReverse.begin(), framesReverse.end());
127
//    std::reverse(framesReverse.begin(), framesReverse.end());
120
 
128
 
121
    // DFT approach
129
    // DFT approach
122
    cv::Mat I;
130
    cv::Mat I;
123
    cv::merge(frames, I);
131
    cv::merge(frames, I);
124
    unsigned int w = I.cols;
132
    unsigned int w = I.cols;
125
    unsigned int h = I.rows;
133
    unsigned int h = I.rows;
126
    I = I.reshape(1, h*w);
134
    I = I.reshape(1, h*w);
127
    I.convertTo(I, CV_32F);
135
    I.convertTo(I, CV_32F);
128
    cv::Mat fI;
136
    cv::Mat fI;
129
    cv::dft(I, fI, cv::DFT_ROWS + cv::DFT_COMPLEX_OUTPUT);
137
    cv::dft(I, fI, cv::DFT_ROWS + cv::DFT_COMPLEX_OUTPUT);
130
    fI = fI.reshape(N*2, h);
138
    fI = fI.reshape(N*2, h);
131
 
139
 
132
    std::vector<cv::Mat> fIcomp;
140
    std::vector<cv::Mat> fIcomp;
133
    cv::split(fI, fIcomp);
141
    cv::split(fI, fIcomp);
134
 
142
 
135
    return fIcomp;
143
    return fIcomp;
136
 
144
 
137
}
145
}
138
 
146
 
139
void AlgorithmPhaseShift::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
147
void AlgorithmPhaseShiftThreeFreq::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
140
 
148
 
141
    const float pi = M_PI;
149
    const float pi = M_PI;
142
 
150
 
143
    assert(frames0.size() == N);
151
    assert(frames0.size() == N);
144
    assert(frames1.size() == N);
152
    assert(frames1.size() == N);
145
 
153
 
146
    int frameRows = frames0[0].rows;
154
    int frameRows = frames0[0].rows;
147
    int frameCols = frames0[0].cols;
155
    int frameCols = frames0[0].cols;
148
 
156
 
149
    // Gray-scale everything
157
    // Gray-scale everything
150
    std::vector<cv::Mat> frames0Gray(N);
158
    std::vector<cv::Mat> frames0Gray(N);
151
    std::vector<cv::Mat> frames1Gray(N);
159
    std::vector<cv::Mat> frames1Gray(N);
152
    for(int i=0; i<N; i++){
160
    for(int i=0; i<N; i++){
153
        cv::cvtColor(frames0[i], frames0Gray[i], CV_BayerBG2GRAY);
161
        cv::cvtColor(frames0[i], frames0Gray[i], CV_BayerBG2GRAY);
154
        cv::cvtColor(frames1[i], frames1Gray[i], CV_BayerBG2GRAY);
162
        cv::cvtColor(frames1[i], frames1Gray[i], CV_BayerBG2GRAY);
155
    }
163
    }
156
 
164
 
157
    // Decode camera0
165
    // Decode camera0
158
    std::vector<cv::Mat> frames0Primary(frames0Gray.begin()+2, frames0Gray.begin()+2+nStepsPrimary);
166
    std::vector<cv::Mat> frames0Primary(frames0Gray.begin()+2, frames0Gray.begin()+2+nStepsPrimary);
159
    std::vector<cv::Mat> frames0Secondary(frames0Gray.begin()+2+nStepsPrimary, frames0Gray.end());
167
    std::vector<cv::Mat> frames0Secondary(frames0Gray.begin()+2+nStepsPrimary, frames0Gray.end()-nStepsTertiary);
-
 
168
    std::vector<cv::Mat> frames0Tertiary(frames0Gray.end()-nStepsTertiary, frames0Gray.end());
160
    std::vector<cv::Mat> F0Primary = getDFTComponents(frames0Primary);
169
    std::vector<cv::Mat> F0Primary = getDFTComponents(frames0Primary);
-
 
170
 
161
    cv::Mat up0Primary;
171
    cv::Mat up0Primary;
162
    cv::phase(F0Primary[2], -F0Primary[3], up0Primary);
172
    cv::phase(F0Primary[2], -F0Primary[3], up0Primary);
163
    //cv::Mat up0Secondary = getPhase(frames0Secondary[0], frames0Secondary[1], frames0Secondary[2]);
-
 
164
    std::vector<cv::Mat> F0Secondary = getDFTComponents(frames0Secondary);
173
    std::vector<cv::Mat> F0Secondary = getDFTComponents(frames0Secondary);
165
    cv::Mat up0Secondary;
174
    cv::Mat up0Secondary;
166
    cv::phase(F0Secondary[2], -F0Secondary[3], up0Secondary);
175
    cv::phase(F0Secondary[2], -F0Secondary[3], up0Secondary);
-
 
176
    std::vector<cv::Mat> F0Tertiary = getDFTComponents(frames0Tertiary);
-
 
177
    cv::Mat up0Tertiary;
-
 
178
    cv::phase(F0Tertiary[2], -F0Tertiary[3], up0Tertiary);
-
 
179
 
167
    cv::Mat up0Equivalent = up0Primary - up0Secondary;
180
    cv::Mat up0EquivalentPS = up0Primary - up0Secondary;
-
 
181
    up0EquivalentPS = cvtools::modulo(up0EquivalentPS, 2.0*pi);
-
 
182
 
-
 
183
    cv::Mat up0EquivalentST = up0Secondary - up0Tertiary;
-
 
184
    up0EquivalentST = cvtools::modulo(up0EquivalentST, 2.0*pi);
-
 
185
 
-
 
186
    cv::Mat up0Equivalent = up0EquivalentPS - up0EquivalentST;
168
    up0Equivalent = cvtools::modulo(up0Equivalent, 2*pi);
187
    up0Equivalent = cvtools::modulo(up0Equivalent, 2.0*pi);
-
 
188
 
169
    cv::Mat up0 = unwrapWithCue(up0Primary, up0Equivalent, (float)screenCols/periodPrimary);
189
    cv::Mat up0 = unwrapWithCue(up0Primary, up0Equivalent, (float)screenCols/periodPrimary);
170
    up0 *= screenCols/(2*pi);
190
    up0 *= screenCols/(2.0*pi);
-
 
191
    cv::Mat amplitude0;
-
 
192
    cv::magnitude(F0Primary[2], -F0Primary[3], amplitude0);
171
 
193
 
172
    // Decode camera1
194
    // Decode camera1
173
    std::vector<cv::Mat> frames1Primary(frames1Gray.begin()+2, frames1Gray.begin()+2+nStepsPrimary);
195
    std::vector<cv::Mat> frames1Primary(frames1Gray.begin()+2, frames1Gray.begin()+2+nStepsPrimary);
174
    std::vector<cv::Mat> frames1Secondary(frames1Gray.begin()+2+nStepsPrimary, frames1Gray.end());
196
    std::vector<cv::Mat> frames1Secondary(frames1Gray.begin()+2+nStepsPrimary, frames1Gray.end());
175
    std::vector<cv::Mat> F1Primary = getDFTComponents(frames1Primary);
197
    std::vector<cv::Mat> F1Primary = getDFTComponents(frames1Primary);
176
    cv::Mat up1Primary;
198
    cv::Mat up1Primary;
177
    cv::phase(F1Primary[2], -F1Primary[3], up1Primary);
199
    cv::phase(F1Primary[2], -F1Primary[3], up1Primary);
178
    //cv::Mat up1Secondary = getPhase(frames1Secondary[0], frames1Secondary[1], frames1Secondary[2]);
-
 
179
    std::vector<cv::Mat> F1Secondary = getDFTComponents(frames1Secondary);
200
    std::vector<cv::Mat> F1Secondary = getDFTComponents(frames1Secondary);
180
    cv::Mat up1Secondary;
201
    cv::Mat up1Secondary;
181
    cv::phase(F1Secondary[2], -F1Secondary[3], up1Secondary);
202
    cv::phase(F1Secondary[2], -F1Secondary[3], up1Secondary);
-
 
203
    std::vector<cv::Mat> F1Tertiary = getDFTComponents(frames1Tertiary);
-
 
204
    cv::Mat up1Tertiary;
-
 
205
    cv::phase(F1Tertiary[2], -F1Tertiary[3], up1Tertiary);
-
 
206
 
182
    cv::Mat up1Equivalent = up1Primary - up1Secondary;
207
    cv::Mat up1EquivalentPS = up1Primary - up1Secondary;
183
    up1Equivalent = cvtools::modulo(up1Equivalent, 2*pi);
208
    up1EquivalentPS = cvtools::modulo(up1EquivalentPS, 2.0*pi);
-
 
209
 
184
    cv::Mat up1 = unwrapWithCue(up1Primary, up1Equivalent, (float)screenCols/periodPrimary);
210
    cv::Mat up1EquivalentST = up1Secondary - up1Tertiary;
185
    up1 *= screenCols/(2*pi);
211
    up1EquivalentST = cvtools::modulo(up1EquivalentST, 2.0*pi);
186
 
212
 
-
 
213
    cv::Mat up1Equivalent = up1EquivalentPS - up1EquivalentST;
-
 
214
    up1Equivalent = cvtools::modulo(up1Equivalent, 2.0*pi);
-
 
215
 
-
 
216
    cv::Mat up1 = unwrapWithCue(up1Primary, up1Equivalent, (float)screenCols/periodPrimary);
-
 
217
    up1 *= screenCols/(2.0*pi);
-
 
218
    cv::Mat amplitude1;
-
 
219
    cv::magnitude(F1Primary[2], -F1Primary[3], amplitude1);
-
 
220
 
-
 
221
cvtools::writeMat(up0Primary, "up0Primary.mat", "up0Primary");
-
 
222
cvtools::writeMat(up0Secondary, "up0Secondary.mat", "up0Secondary");
-
 
223
cvtools::writeMat(up0Equivalent, "up0Equivalent.mat", "up0Equivalent");
-
 
224
cvtools::writeMat(up0, "up0.mat", "up0");
-
 
225
cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
187
 
226
 
188
    // Rectifying homographies (rotation+projections)
227
    // Rectifying homographies (rotation+projections)
189
    cv::Size frameSize(frameCols, frameRows);
228
    cv::Size frameSize(frameCols, frameRows);
190
    cv::Mat R, T;
229
    cv::Mat R, T;
191
    // stereoRectify segfaults unless R is double precision
230
    // stereoRectify segfaults unless R is double precision
192
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
231
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
193
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
232
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
194
    cv::Mat R0, R1, P0, P1, QRect;
233
    cv::Mat R0, R1, P0, P1, QRect;
195
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
234
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
196
 
235
 
197
    // Interpolation maps (lens distortion and rectification)
236
    // Interpolation maps (lens distortion and rectification)
198
    cv::Mat map0X, map0Y, map1X, map1Y;
237
    cv::Mat map0X, map0Y, map1X, map1Y;
199
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
238
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
200
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
239
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
201
 
240
 
202
    // Phase remaps
241
    // Phase remaps
203
    cv::Mat up0Rect, up1Rect;
242
    cv::Mat up0Rect, up1Rect;
204
    cv::remap(up0, up0Rect, map0X, map0Y, CV_INTER_LINEAR);
243
    cv::remap(up0, up0Rect, map0X, map0Y, CV_INTER_LINEAR);
205
    cv::remap(up1, up1Rect, map1X, map1Y, CV_INTER_LINEAR);
244
    cv::remap(up1, up1Rect, map1X, map1Y, CV_INTER_LINEAR);
206
 
245
 
-
 
246
    // amplitude remaps
-
 
247
    cv::Mat amplitude0Rect, amplitude1Rect;
-
 
248
    cv::remap(amplitude0, amplitude0Rect, map0X, map0Y, CV_INTER_LINEAR);
-
 
249
    cv::remap(amplitude1, amplitude1Rect, map1X, map1Y, CV_INTER_LINEAR);
-
 
250
 
207
//cvtools::writeMat(up0Rect, "up0Rect.mat", "up0Rect");
251
//cvtools::writeMat(up0Rect, "up0Rect.mat", "up0Rect");
208
//cvtools::writeMat(up1Rect, "up1Rect.mat", "up1Rect");
252
//cvtools::writeMat(up1Rect, "up1Rect.mat", "up1Rect");
209
 
253
 
210
    // color debayer and remap
254
    // color debayer and remap
211
    cv::Mat color0Rect, color1Rect;
255
    cv::Mat color0Rect, color1Rect;
212
//    frames0[0].convertTo(color0Rect, CV_8UC1, 1.0/256.0);
256
//    frames0[0].convertTo(color0Rect, CV_8UC1, 1.0/256.0);
213
    cv::cvtColor(frames0[0], color0Rect, CV_BayerBG2RGB);
257
    cv::cvtColor(frames0[0], color0Rect, CV_BayerBG2RGB);
214
    cv::remap(color0Rect, color0Rect, map0X, map0Y, CV_INTER_LINEAR);
258
    cv::remap(color0Rect, color0Rect, map0X, map0Y, CV_INTER_LINEAR);
215
 
259
 
216
//    frames1[0].convertTo(color1Rect, CV_8UC1, 1.0/256.0);
260
//    frames1[0].convertTo(color1Rect, CV_8UC1, 1.0/256.0);
217
    cv::cvtColor(frames1[0], color1Rect, CV_BayerBG2RGB);
261
    cv::cvtColor(frames1[0], color1Rect, CV_BayerBG2RGB);
218
    cv::remap(color1Rect, color1Rect, map1X, map1Y, CV_INTER_LINEAR);
262
    cv::remap(color1Rect, color1Rect, map1X, map1Y, CV_INTER_LINEAR);
219
 
263
 
220
//cvtools::writeMat(frames0Rect[18], "frames0Rect_18.mat", "frames0Rect_18");
264
//cvtools::writeMat(frames0Rect[18], "frames0Rect_18.mat", "frames0Rect_18");
221
//cvtools::writeMat(frames0Rect[19], "frames0Rect_19.mat", "frames0Rect_19");
265
//cvtools::writeMat(frames0Rect[19], "frames0Rect_19.mat", "frames0Rect_19");
222
 
266
 
223
//cvtools::writeMat(color0Rect, "color0Rect.mat", "color0Rect");
267
//cvtools::writeMat(color0Rect, "color0Rect.mat", "color0Rect");
224
//cvtools::writeMat(color1Rect, "color1Rect.mat", "color1Rect");
268
//cvtools::writeMat(color1Rect, "color1Rect.mat", "color1Rect");
225
 
269
 
226
    // On/off remaps
270
    // On/off remaps
227
    cv::Mat frames0OnRect, frames0OffRect;
271
    cv::Mat frames0OnRect, frames0OffRect;
228
    cv::remap(frames0Gray[0], frames0OnRect, map0X, map0Y, CV_INTER_LINEAR);
272
    cv::remap(frames0Gray[0], frames0OnRect, map0X, map0Y, CV_INTER_LINEAR);
229
    cv::remap(frames0Gray[1], frames0OffRect, map0X, map0Y, CV_INTER_LINEAR);
273
    cv::remap(frames0Gray[1], frames0OffRect, map0X, map0Y, CV_INTER_LINEAR);
230
 
274
 
231
    cv::Mat frames1OnRect, frames1OffRect;
275
    cv::Mat frames1OnRect, frames1OffRect;
232
    cv::remap(frames1Gray[0], frames1OnRect, map1X, map1Y, CV_INTER_LINEAR);
276
    cv::remap(frames1Gray[0], frames1OnRect, map1X, map1Y, CV_INTER_LINEAR);
233
    cv::remap(frames1Gray[1], frames1OffRect, map1X, map1Y, CV_INTER_LINEAR);
277
    cv::remap(frames1Gray[1], frames1OffRect, map1X, map1Y, CV_INTER_LINEAR);
234
 
278
 
235
    // Occlusion masks
279
    // Occlusion masks
236
    cv::Mat occlusion0Rect, occlusion1Rect;
280
    cv::Mat occlusion0Rect, occlusion1Rect;
237
    cv::subtract(frames0OnRect, frames0OffRect, occlusion0Rect);
281
    cv::subtract(frames0OnRect, frames0OffRect, occlusion0Rect);
238
    occlusion0Rect = (occlusion0Rect > 25) & (occlusion0Rect < 250);
282
    occlusion0Rect = (occlusion0Rect > 25) & (occlusion0Rect < 250);
239
    cv::subtract(frames1OnRect, frames1OffRect, occlusion1Rect);
283
    cv::subtract(frames1OnRect, frames1OffRect, occlusion1Rect);
240
    occlusion1Rect = (occlusion1Rect > 25) & (occlusion1Rect < 250);
284
    occlusion1Rect = (occlusion1Rect > 25) & (occlusion1Rect < 250);
241
 
285
 
-
 
286
    // Threshold on energy at primary frequency
-
 
287
    occlusion0Rect = occlusion0Rect & (amplitude0Rect > 5.0*nStepsPrimary);
-
 
288
    occlusion1Rect = occlusion1Rect & (amplitude1Rect > 5.0*nStepsPrimary);
-
 
289
 
242
//cvtools::writeMat(occlusion0Rect, "occlusion0Rect.mat", "occlusion0Rect");
290
//cvtools::writeMat(occlusion0Rect, "occlusion0Rect.mat", "occlusion0Rect");
243
//cvtools::writeMat(occlusion1Rect, "occlusion1Rect.mat", "occlusion1Rect");
291
//cvtools::writeMat(occlusion1Rect, "occlusion1Rect.mat", "occlusion1Rect");
244
 
292
 
245
    // Erode occlusion masks
293
    // Erode occlusion masks
246
    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
294
    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
247
    cv::erode(occlusion0Rect, occlusion0Rect, strel);
295
    cv::erode(occlusion0Rect, occlusion0Rect, strel);
248
    cv::erode(occlusion1Rect, occlusion1Rect, strel);
296
    cv::erode(occlusion1Rect, occlusion1Rect, strel);
249
 
297
 
250
    // Threshold on gradient of phase
298
    // Threshold on gradient of phase
251
    cv::Mat edges0;
299
    cv::Mat edges0;
252
    cv::Sobel(up0Rect, edges0, -1, 1, 0, 5);
300
    cv::Sobel(up0Rect, edges0, -1, 1, 1, 5);
253
    occlusion0Rect = occlusion0Rect & (abs(edges0) < 150);
301
    occlusion0Rect = occlusion0Rect & (abs(edges0) < 150);
254
 
302
 
255
    cv::Mat edges1;
303
    cv::Mat edges1;
256
    cv::Sobel(up1Rect, edges1, -1, 1, 0, 5);
304
    cv::Sobel(up1Rect, edges1, -1, 1, 1, 5);
257
    occlusion1Rect = occlusion1Rect & (abs(edges1) < 150);
305
    occlusion1Rect = occlusion1Rect & (abs(edges1) < 150);
258
 
306
 
259
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
307
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
260
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
308
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
261
 
309
 
262
    // Match phase maps
310
    // Match phase maps
263
    int frameRectRows = map0X.rows;
311
    int frameRectRows = map0X.rows;
264
    int frameRectCols = map0X.cols;
312
    int frameRectCols = map0X.cols;
265
 
313
 
266
    // camera0 against camera1
314
    // camera0 against camera1
267
    std::vector<cv::Vec2f> q0Rect, q1Rect;
315
    std::vector<cv::Vec2f> q0Rect, q1Rect;
268
    for(int row=0; row<frameRectRows; row++){
316
    for(int row=0; row<frameRectRows; row++){
269
        for(int col=0; col<frameRectCols; col++){
317
        for(int col=0; col<frameRectCols; col++){
270
 
318
 
271
            if(!occlusion0Rect.at<char>(row,col))
319
            if(!occlusion0Rect.at<char>(row,col))
272
                continue;
320
                continue;
273
 
321
 
274
            float up0i = up0Rect.at<float>(row,col);
322
            float up0i = up0Rect.at<float>(row,col);
275
            for(int col1=0; col1<up1Rect.cols-1; col1++){
323
            for(int col1=0; col1<up1Rect.cols-1; col1++){
276
 
324
 
277
                if(!occlusion1Rect.at<char>(row,col1) || !occlusion1Rect.at<char>(row,col1+1))
325
                if(!occlusion1Rect.at<char>(row,col1) || !occlusion1Rect.at<char>(row,col1+1))
278
                    continue;
326
                    continue;
279
 
327
 
280
                float up1Left = up1Rect.at<float>(row,col1);
328
                float up1Left = up1Rect.at<float>(row,col1);
281
                float up1Right = up1Rect.at<float>(row,col1+1);
329
                float up1Right = up1Rect.at<float>(row,col1+1);
282
 
330
 
283
                if((up1Left <= up0i) && (up0i <= up1Right) && (up0i-up1Left < 1) && (up1Right-up0i < 1)){
331
                if((up1Left <= up0i) && (up0i <= up1Right) && (up0i-up1Left < 0.5) && (up1Right-up0i < 0.5)){
284
 
332
 
285
                    float col1i = col1 + (up0i-up1Left)/(up1Right-up1Left);
333
                    float col1i = col1 + (up0i-up1Left)/(up1Right-up1Left);
286
 
334
 
287
                    q0Rect.push_back(cv::Point2f(col, row));
335
                    q0Rect.push_back(cv::Point2f(col, row));
288
                    q1Rect.push_back(cv::Point2f(col1i, row));
336
                    q1Rect.push_back(cv::Point2f(col1i, row));
289
 
337
 
290
                    break;
338
                    break;
291
                }
339
                }
292
            }
340
            }
293
        }
341
        }
294
    }
342
    }
295
 
343
 
296
//    // camera1 against camera0
344
//    // camera1 against camera0
297
//    for(int row=0; row<frameRectRows; row++){
345
//    for(int row=0; row<frameRectRows; row++){
298
//        for(int col=0; col<frameRectCols; col++){
346
//        for(int col=0; col<frameRectCols; col++){
299
 
347
 
300
//            if(!occlusion1Rect.at<char>(row,col))
348
//            if(!occlusion1Rect.at<char>(row,col))
301
//                continue;
349
//                continue;
302
 
350
 
303
//            float up1i = up1Rect.at<float>(row,col);
351
//            float up1i = up1Rect.at<float>(row,col);
304
//            for(int col0=0; col0<up0Rect.cols-1; col0++){
352
//            for(int col0=0; col0<up0Rect.cols-1; col0++){
305
 
353
 
306
//                if(!occlusion0Rect.at<char>(row,col0) || !occlusion0Rect.at<char>(row,col0+1))
354
//                if(!occlusion0Rect.at<char>(row,col0) || !occlusion0Rect.at<char>(row,col0+1))
307
//                    continue;
355
//                    continue;
308
 
356
 
309
//                float up0Left = up0Rect.at<float>(row,col0);
357
//                float up0Left = up0Rect.at<float>(row,col0);
310
//                float up0Right = up0Rect.at<float>(row,col0+1);
358
//                float up0Right = up0Rect.at<float>(row,col0+1);
311
 
359
 
312
//                if((up0Left <= up1i) && (up1i <= up0Right) && (up1i-up0Left < 1) && (up0Right-up1i < 1)){
360
//                if((up0Left <= up1i) && (up1i <= up0Right) && (up1i-up0Left < 1) && (up0Right-up1i < 1)){
313
 
361
 
314
//                    float col0i = col0 + (up1i-up0Left)/(up0Right-up0Left);
362
//                    float col0i = col0 + (up1i-up0Left)/(up0Right-up0Left);
315
 
363
 
316
//                    q1Rect.push_back(cv::Point2f(col, row));
364
//                    q1Rect.push_back(cv::Point2f(col, row));
317
//                    q0Rect.push_back(cv::Point2f(col0i, row));
365
//                    q0Rect.push_back(cv::Point2f(col0i, row));
318
 
366
 
319
//                    break;
367
//                    break;
320
//                }
368
//                }
321
//            }
369
//            }
322
//        }
370
//        }
323
//    }
371
//    }
324
 
372
 
325
    int nMatches = q0Rect.size();
373
    int nMatches = q0Rect.size();
326
 
374
 
327
    if(nMatches < 1){
375
    if(nMatches < 1){
328
        Q.resize(0);
376
        Q.resize(0);
329
        color.resize(0);
377
        color.resize(0);
330
 
378
 
331
        return;
379
        return;
332
    }
380
    }
333
 
381
 
334
    // Retrieve color information
382
    // Retrieve color information
335
    color.resize(nMatches);
383
    color.resize(nMatches);
336
    for(int i=0; i<nMatches; i++){
384
    for(int i=0; i<nMatches; i++){
337
 
385
 
338
        cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0Rect[i][1], q0Rect[i][0]);
386
        cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0Rect[i][1], q0Rect[i][0]);
339
        cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1Rect[i][1], q1Rect[i][0]);
387
        cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1Rect[i][1], q1Rect[i][0]);
340
 
388
 
341
        color[i] = 0.5*c0 + 0.5*c1;
389
        color[i] = 0.5*c0 + 0.5*c1;
342
    }
390
    }
343
 
391
 
344
    // Triangulate points
392
    // Triangulate points
345
    cv::Mat QMatHomogenous, QMat;
393
    cv::Mat QMatHomogenous, QMat;
346
    cv::triangulatePoints(P0, P1, q0Rect, q1Rect, QMatHomogenous);
394
    cv::triangulatePoints(P0, P1, q0Rect, q1Rect, QMatHomogenous);
347
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
395
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
348
 
396
 
349
    // Undo rectification
397
    // Undo rectification
350
    cv::Mat R0Inv;
398
    cv::Mat R0Inv;
351
    cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
399
    cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
352
    QMat = R0Inv*QMat;
400
    QMat = R0Inv*QMat;
353
 
401
 
354
    cvtools::matToPoints3f(QMat, Q);
402
    cvtools::matToPoints3f(QMat, Q);
355
 
403
 
356
}
404
}
357
 
405