1 |
#include "AlgorithmPhaseShiftThreeFreq.h"
|
1 |
#include "AlgorithmPhaseShiftThreeFreq.h"
|
2 |
#include <math.h>
|
2 |
#include <math.h>
|
3 |
|
3 |
|
4 |
#include "cvtools.h"
|
4 |
#include "cvtools.h"
|
5 |
|
5 |
|
6 |
#ifndef M_PI
|
6 |
#ifndef M_PI
|
7 |
#define M_PI 3.14159265358979323846
|
7 |
#define M_PI 3.14159265358979323846
|
8 |
#endif
|
8 |
#endif
|
9 |
|
9 |
|
10 |
static unsigned int nStepsPrimary = 16; // number of shifts/steps in primary
|
10 |
static unsigned int nStepsPrimary = 16; // number of shifts/steps in primary
|
11 |
static unsigned int nStepsSecondary = 16; // number of shifts/steps in secondary
|
11 |
static unsigned int nStepsSecondary = 16; // number of shifts/steps in secondary
|
12 |
static unsigned int nStepsTertiary = 16; // number of shifts/steps in tertiary
|
12 |
static unsigned int nStepsTertiary = 16; // number of shifts/steps in tertiary
|
13 |
static float periodPrimary = 24; // primary period
|
13 |
static float periodPrimary = 24; // primary period
|
14 |
static float periodSecondary = 30; // primary period
|
14 |
static float periodSecondary = 30; // primary period
|
15 |
|
15 |
|
16 |
// Algorithm
|
16 |
// Algorithm
|
17 |
static cv::Mat computePhaseVector(unsigned int length, float phase, float pitch){
|
17 |
static cv::Mat computePhaseVector(unsigned int length, float phase, float pitch){
|
18 |
|
18 |
|
19 |
cv::Mat phaseVector(length, 1, CV_8UC3);
|
19 |
cv::Mat phaseVector(length, 1, CV_8UC3);
|
20 |
//phaseVector.setTo(0);
|
20 |
//phaseVector.setTo(0);
|
21 |
|
21 |
|
22 |
const float pi = M_PI;
|
22 |
const float pi = M_PI;
|
23 |
|
23 |
|
24 |
// Loop through vector
|
24 |
// Loop through vector
|
25 |
for(int i=0; i<phaseVector.rows; i++){
|
25 |
for(int i=0; i<phaseVector.rows; i++){
|
26 |
// Amplitude of channels
|
26 |
// Amplitude of channels
|
27 |
float amp = 0.5*(1+cos(2*pi*i/pitch - phase));
|
27 |
float amp = 0.5*(1+cos(2*pi*i/pitch - phase));
|
28 |
phaseVector.at<cv::Vec3b>(i, 0) = cv::Vec3b(255.0*amp,255.0*amp,255.0*amp);
|
28 |
phaseVector.at<cv::Vec3b>(i, 0) = cv::Vec3b(255.0*amp,255.0*amp,255.0*amp);
|
29 |
}
|
29 |
}
|
30 |
|
30 |
|
31 |
return phaseVector;
|
31 |
return phaseVector;
|
32 |
}
|
32 |
}
|
33 |
|
33 |
|
34 |
AlgorithmPhaseShiftThreeFreq::AlgorithmPhaseShiftThreeFreq(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
|
34 |
AlgorithmPhaseShiftThreeFreq::AlgorithmPhaseShiftThreeFreq(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
|
35 |
|
35 |
|
36 |
// Set N
|
36 |
// Set N
|
37 |
N = 2+nStepsPrimary+nStepsSecondary+nStepsTertiary;
|
37 |
N = 2+nStepsPrimary+nStepsSecondary+nStepsTertiary;
|
38 |
|
38 |
|
39 |
// Determine the tertiary period to fulfill the heterodyne condition
|
39 |
// Determine the tertiary period to fulfill the heterodyne condition
|
40 |
float periodTertiary = (screenCols*periodPrimary*periodSecondary)/(periodPrimary*periodSecondary+2*screenCols*periodPrimary-screenCols*periodSecondary);
|
40 |
float periodTertiary = (screenCols*periodPrimary*periodSecondary)/(periodPrimary*periodSecondary+2*screenCols*periodPrimary-screenCols*periodSecondary);
|
41 |
|
41 |
|
42 |
// all on pattern
|
42 |
// all on pattern
|
43 |
cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
|
43 |
cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
|
44 |
patterns.push_back(allOn);
|
44 |
patterns.push_back(allOn);
|
45 |
|
45 |
|
46 |
// all off pattern
|
46 |
// all off pattern
|
47 |
cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
|
47 |
cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
|
48 |
patterns.push_back(allOff);
|
48 |
patterns.push_back(allOff);
|
49 |
|
49 |
|
50 |
// Precompute encoded patterns
|
50 |
// Precompute encoded patterns
|
51 |
const float pi = M_PI;
|
51 |
const float pi = M_PI;
|
52 |
|
52 |
|
53 |
// Primary encoding patterns
|
53 |
// Primary encoding patterns
|
54 |
for(unsigned int i=0; i<nStepsPrimary; i++){
|
54 |
for(unsigned int i=0; i<nStepsPrimary; i++){
|
55 |
float phase = 2.0*pi/nStepsPrimary * i;
|
55 |
float phase = 2.0*pi/nStepsPrimary * i;
|
56 |
float pitch = periodPrimary;
|
56 |
float pitch = periodPrimary;
|
57 |
cv::Mat patternI(1,1,CV_8U);
|
57 |
cv::Mat patternI(1,1,CV_8U);
|
58 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
58 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
59 |
patterns.push_back(patternI.t());
|
59 |
patterns.push_back(patternI.t());
|
60 |
}
|
60 |
}
|
61 |
|
61 |
|
62 |
// Secondary encoding patterns
|
62 |
// Secondary encoding patterns
|
63 |
for(unsigned int i=0; i<nStepsSecondary; i++){
|
63 |
for(unsigned int i=0; i<nStepsSecondary; i++){
|
64 |
float phase = 2.0*pi/nStepsSecondary * i;
|
64 |
float phase = 2.0*pi/nStepsSecondary * i;
|
65 |
float pitch = periodSecondary;
|
65 |
float pitch = periodSecondary;
|
66 |
cv::Mat patternI(1,1,CV_8U);
|
66 |
cv::Mat patternI(1,1,CV_8U);
|
67 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
67 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
68 |
patterns.push_back(patternI.t());
|
68 |
patterns.push_back(patternI.t());
|
69 |
}
|
69 |
}
|
70 |
// Tertiary encoding patterns
|
70 |
// Tertiary encoding patterns
|
71 |
for(unsigned int i=0; i<nStepsTertiary; i++){
|
71 |
for(unsigned int i=0; i<nStepsTertiary; i++){
|
72 |
float phase = 2.0*pi/nStepsTertiary * i;
|
72 |
float phase = 2.0*pi/nStepsTertiary * i;
|
73 |
float pitch = periodTertiary;
|
73 |
float pitch = periodTertiary;
|
74 |
cv::Mat patternI(1,1,CV_8U);
|
74 |
cv::Mat patternI(1,1,CV_8U);
|
75 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
75 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
76 |
patterns.push_back(patternI.t());
|
76 |
patterns.push_back(patternI.t());
|
77 |
}
|
77 |
}
|
78 |
|
78 |
|
79 |
}
|
79 |
}
|
80 |
|
80 |
|
81 |
cv::Mat AlgorithmPhaseShiftThreeFreq::getEncodingPattern(unsigned int depth){
|
81 |
cv::Mat AlgorithmPhaseShiftThreeFreq::getEncodingPattern(unsigned int depth){
|
82 |
return patterns[depth];
|
82 |
return patterns[depth];
|
83 |
}
|
83 |
}
|
84 |
|
84 |
|
85 |
|
85 |
|
86 |
// Absolute phase from 3 frames
|
86 |
// Absolute phase from 3 frames
|
87 |
static cv::Mat getPhase(const cv::Mat I1, const cv::Mat I2, const cv::Mat I3){
|
87 |
static cv::Mat getPhase(const cv::Mat I1, const cv::Mat I2, const cv::Mat I3){
|
88 |
|
88 |
|
89 |
cv::Mat_<float> I1_(I1);
|
89 |
cv::Mat_<float> I1_(I1);
|
90 |
cv::Mat_<float> I2_(I2);
|
90 |
cv::Mat_<float> I2_(I2);
|
91 |
cv::Mat_<float> I3_(I3);
|
91 |
cv::Mat_<float> I3_(I3);
|
92 |
|
92 |
|
93 |
cv::Mat phase;
|
93 |
cv::Mat phase;
|
94 |
|
94 |
|
95 |
// One call approach
|
95 |
// One call approach
|
96 |
cv::phase(2.0*I1_-I3_-I2_, sqrt(3.0)*(I2_-I3_), phase);
|
96 |
cv::phase(2.0*I1_-I3_-I2_, sqrt(3.0)*(I2_-I3_), phase);
|
97 |
return phase;
|
97 |
return phase;
|
98 |
|
98 |
|
99 |
}
|
99 |
}
|
100 |
|
100 |
|
101 |
// Phase unwrapping by means of a phase cue
|
101 |
// Phase unwrapping by means of a phase cue
|
102 |
static cv::Mat unwrapWithCue(const cv::Mat up, const cv::Mat upCue, float nPhases){
|
102 |
static cv::Mat unwrapWithCue(const cv::Mat up, const cv::Mat upCue, float nPhases){
|
103 |
|
103 |
|
104 |
const float pi = M_PI;
|
104 |
const float pi = M_PI;
|
105 |
|
105 |
|
106 |
// Determine number of jumps
|
106 |
// Determine number of jumps
|
107 |
cv::Mat P = (upCue*nPhases-up)/(2.0*pi);
|
107 |
cv::Mat P = (upCue*nPhases-up)/(2.0*pi);
|
108 |
|
108 |
|
109 |
// Round to integers
|
109 |
// Round to integers
|
110 |
P.convertTo(P, CV_8U);
|
110 |
P.convertTo(P, CV_8U);
|
111 |
P.convertTo(P, CV_32F);
|
111 |
P.convertTo(P, CV_32F);
|
112 |
|
112 |
|
113 |
// Add to phase
|
113 |
// Add to phase
|
114 |
cv::Mat upUnwrapped = up + P*2*pi;
|
114 |
cv::Mat upUnwrapped = up + P*2*pi;
|
115 |
|
115 |
|
116 |
// Scale to range [0; 2pi]
|
116 |
// Scale to range [0; 2pi]
|
117 |
upUnwrapped *= 1.0/nPhases;
|
117 |
upUnwrapped *= 1.0/nPhases;
|
118 |
|
118 |
|
119 |
return upUnwrapped;
|
119 |
return upUnwrapped;
|
120 |
}
|
120 |
}
|
121 |
|
121 |
|
122 |
// Absolute phase and magnitude from N frames
|
122 |
// Absolute phase and magnitude from N frames
|
123 |
static std::vector<cv::Mat> getDFTComponents(const std::vector<cv::Mat> frames){
|
123 |
static std::vector<cv::Mat> getDFTComponents(const std::vector<cv::Mat> frames){
|
124 |
|
124 |
|
125 |
unsigned int N = frames.size();
|
125 |
unsigned int N = frames.size();
|
126 |
|
126 |
|
127 |
// std::vector<cv::Mat> framesReverse = frames;
|
127 |
// std::vector<cv::Mat> framesReverse = frames;
|
128 |
// std::reverse(framesReverse.begin(), framesReverse.end());
|
128 |
// std::reverse(framesReverse.begin(), framesReverse.end());
|
129 |
|
129 |
|
130 |
// DFT approach
|
130 |
// DFT approach
|
131 |
cv::Mat I;
|
131 |
cv::Mat I;
|
132 |
cv::merge(frames, I);
|
132 |
cv::merge(frames, I);
|
133 |
unsigned int w = I.cols;
|
133 |
unsigned int w = I.cols;
|
134 |
unsigned int h = I.rows;
|
134 |
unsigned int h = I.rows;
|
135 |
I = I.reshape(1, h*w);
|
135 |
I = I.reshape(1, h*w);
|
136 |
I.convertTo(I, CV_32F);
|
136 |
I.convertTo(I, CV_32F);
|
137 |
cv::Mat fI;
|
137 |
cv::Mat fI;
|
138 |
cv::dft(I, fI, cv::DFT_ROWS + cv::DFT_COMPLEX_OUTPUT);
|
138 |
cv::dft(I, fI, cv::DFT_ROWS + cv::DFT_COMPLEX_OUTPUT);
|
139 |
fI = fI.reshape(N*2, h);
|
139 |
fI = fI.reshape(N*2, h);
|
140 |
|
140 |
|
141 |
std::vector<cv::Mat> fIcomp;
|
141 |
std::vector<cv::Mat> fIcomp;
|
142 |
cv::split(fI, fIcomp);
|
142 |
cv::split(fI, fIcomp);
|
143 |
|
143 |
|
144 |
return fIcomp;
|
144 |
return fIcomp;
|
145 |
|
145 |
|
146 |
}
|
146 |
}
|
147 |
|
147 |
|
148 |
void AlgorithmPhaseShiftThreeFreq::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
|
148 |
void AlgorithmPhaseShiftThreeFreq::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
|
149 |
|
149 |
|
150 |
const float pi = M_PI;
|
150 |
const float pi = M_PI;
|
151 |
|
151 |
|
152 |
assert(frames0.size() == N);
|
152 |
assert(frames0.size() == N);
|
153 |
assert(frames1.size() == N);
|
153 |
assert(frames1.size() == N);
|
154 |
|
154 |
|
155 |
int frameRows = frames0[0].rows;
|
155 |
int frameRows = frames0[0].rows;
|
156 |
int frameCols = frames0[0].cols;
|
156 |
int frameCols = frames0[0].cols;
|
157 |
|
157 |
|
158 |
// Gray-scale everything
|
158 |
// Gray-scale everything
|
159 |
std::vector<cv::Mat> frames0Gray(N);
|
159 |
std::vector<cv::Mat> frames0Gray(N);
|
160 |
std::vector<cv::Mat> frames1Gray(N);
|
160 |
std::vector<cv::Mat> frames1Gray(N);
|
161 |
for(int i=0; i<N; i++){
|
161 |
for(int i=0; i<N; i++){
|
162 |
cv::cvtColor(frames0[i], frames0Gray[i], CV_BayerBG2GRAY);
|
162 |
cv::cvtColor(frames0[i], frames0Gray[i], CV_BayerBG2GRAY);
|
163 |
cv::cvtColor(frames1[i], frames1Gray[i], CV_BayerBG2GRAY);
|
163 |
cv::cvtColor(frames1[i], frames1Gray[i], CV_BayerBG2GRAY);
|
164 |
}
|
164 |
}
|
165 |
|
165 |
|
166 |
// Decode camera0
|
166 |
// Decode camera0
|
167 |
std::vector<cv::Mat> frames0Primary(frames0Gray.begin()+2, frames0Gray.begin()+2+nStepsPrimary);
|
167 |
std::vector<cv::Mat> frames0Primary(frames0Gray.begin()+2, frames0Gray.begin()+2+nStepsPrimary);
|
168 |
std::vector<cv::Mat> frames0Secondary(frames0Gray.begin()+2+nStepsPrimary, frames0Gray.end()-nStepsTertiary);
|
168 |
std::vector<cv::Mat> frames0Secondary(frames0Gray.begin()+2+nStepsPrimary, frames0Gray.end()-nStepsTertiary);
|
169 |
std::vector<cv::Mat> frames0Tertiary(frames0Gray.end()-nStepsTertiary, frames0Gray.end());
|
169 |
std::vector<cv::Mat> frames0Tertiary(frames0Gray.end()-nStepsTertiary, frames0Gray.end());
|
170 |
|
170 |
|
171 |
std::vector<cv::Mat> F0Primary = getDFTComponents(frames0Primary);
|
171 |
std::vector<cv::Mat> F0Primary = getDFTComponents(frames0Primary);
|
172 |
cv::Mat up0Primary;
|
172 |
cv::Mat up0Primary;
|
173 |
cv::phase(F0Primary[2], -F0Primary[3], up0Primary);
|
173 |
cv::phase(F0Primary[2], -F0Primary[3], up0Primary);
|
174 |
std::vector<cv::Mat> F0Secondary = getDFTComponents(frames0Secondary);
|
174 |
std::vector<cv::Mat> F0Secondary = getDFTComponents(frames0Secondary);
|
175 |
cv::Mat up0Secondary;
|
175 |
cv::Mat up0Secondary;
|
176 |
cv::phase(F0Secondary[2], -F0Secondary[3], up0Secondary);
|
176 |
cv::phase(F0Secondary[2], -F0Secondary[3], up0Secondary);
|
177 |
std::vector<cv::Mat> F0Tertiary = getDFTComponents(frames0Tertiary);
|
177 |
std::vector<cv::Mat> F0Tertiary = getDFTComponents(frames0Tertiary);
|
178 |
cv::Mat up0Tertiary;
|
178 |
cv::Mat up0Tertiary;
|
179 |
cv::phase(F0Tertiary[2], -F0Tertiary[3], up0Tertiary);
|
179 |
cv::phase(F0Tertiary[2], -F0Tertiary[3], up0Tertiary);
|
180 |
|
180 |
|
181 |
cv::Mat up0EquivalentPS = up0Primary - up0Secondary;
|
181 |
cv::Mat up0EquivalentPS = up0Primary - up0Secondary;
|
182 |
up0EquivalentPS = cvtools::modulo(up0EquivalentPS, 2.0*pi);
|
182 |
up0EquivalentPS = cvtools::modulo(up0EquivalentPS, 2.0*pi);
|
183 |
|
183 |
|
184 |
cv::Mat up0EquivalentST = up0Secondary - up0Tertiary;
|
184 |
cv::Mat up0EquivalentST = up0Secondary - up0Tertiary;
|
185 |
up0EquivalentST = cvtools::modulo(up0EquivalentST, 2.0*pi);
|
185 |
up0EquivalentST = cvtools::modulo(up0EquivalentST, 2.0*pi);
|
186 |
|
186 |
|
187 |
cv::Mat up0Equivalent = up0EquivalentPS - up0EquivalentST;
|
187 |
cv::Mat up0Equivalent = up0EquivalentPS - up0EquivalentST;
|
188 |
up0Equivalent = cvtools::modulo(up0Equivalent, 2.0*pi);
|
188 |
up0Equivalent = cvtools::modulo(up0Equivalent, 2.0*pi);
|
189 |
|
189 |
|
190 |
cv::Mat up0Equivalent2 = unwrapWithCue(up0EquivalentPS, up0Equivalent, (float)screenCols/periodPrimary);
|
- |
|
191 |
|
- |
|
192 |
cv::Mat up0 = unwrapWithCue(up0Primary, up0Equivalent2, (float)screenCols/periodPrimary);
|
190 |
cv::Mat up0 = unwrapWithCue(up0Primary, up0Equivalent, (float)screenCols/periodPrimary);
|
193 |
up0 *= screenCols/(2.0*pi);
|
191 |
up0 *= screenCols/(2.0*pi);
|
194 |
cv::Mat amplitude0;
|
192 |
cv::Mat amplitude0;
|
195 |
cv::magnitude(F0Primary[2], -F0Primary[3], amplitude0);
|
193 |
cv::magnitude(F0Primary[2], -F0Primary[3], amplitude0);
|
196 |
|
194 |
|
197 |
// Decode camera1
|
195 |
// Decode camera1
|
198 |
std::vector<cv::Mat> frames1Primary(frames1Gray.begin()+2, frames1Gray.begin()+2+nStepsPrimary);
|
196 |
std::vector<cv::Mat> frames1Primary(frames1Gray.begin()+2, frames1Gray.begin()+2+nStepsPrimary);
|
199 |
std::vector<cv::Mat> frames1Secondary(frames1Gray.begin()+2+nStepsPrimary, frames1Gray.end()-nStepsTertiary);
|
197 |
std::vector<cv::Mat> frames1Secondary(frames1Gray.begin()+2+nStepsPrimary, frames1Gray.end()-nStepsTertiary);
|
200 |
std::vector<cv::Mat> frames1Tertiary(frames1Gray.end()-nStepsTertiary, frames1Gray.end());
|
198 |
std::vector<cv::Mat> frames1Tertiary(frames1Gray.end()-nStepsTertiary, frames1Gray.end());
|
201 |
|
199 |
|
202 |
std::vector<cv::Mat> F1Primary = getDFTComponents(frames1Primary);
|
200 |
std::vector<cv::Mat> F1Primary = getDFTComponents(frames1Primary);
|
203 |
cv::Mat up1Primary;
|
201 |
cv::Mat up1Primary;
|
204 |
cv::phase(F1Primary[2], -F1Primary[3], up1Primary);
|
202 |
cv::phase(F1Primary[2], -F1Primary[3], up1Primary);
|
205 |
std::vector<cv::Mat> F1Secondary = getDFTComponents(frames1Secondary);
|
203 |
std::vector<cv::Mat> F1Secondary = getDFTComponents(frames1Secondary);
|
206 |
cv::Mat up1Secondary;
|
204 |
cv::Mat up1Secondary;
|
207 |
cv::phase(F1Secondary[2], -F1Secondary[3], up1Secondary);
|
205 |
cv::phase(F1Secondary[2], -F1Secondary[3], up1Secondary);
|
208 |
std::vector<cv::Mat> F1Tertiary = getDFTComponents(frames1Tertiary);
|
206 |
std::vector<cv::Mat> F1Tertiary = getDFTComponents(frames1Tertiary);
|
209 |
cv::Mat up1Tertiary;
|
207 |
cv::Mat up1Tertiary;
|
210 |
cv::phase(F1Tertiary[2], -F1Tertiary[3], up1Tertiary);
|
208 |
cv::phase(F1Tertiary[2], -F1Tertiary[3], up1Tertiary);
|
211 |
|
209 |
|
212 |
cv::Mat up1EquivalentPS = up1Primary - up1Secondary;
|
210 |
cv::Mat up1EquivalentPS = up1Primary - up1Secondary;
|
213 |
up1EquivalentPS = cvtools::modulo(up1EquivalentPS, 2.0*pi);
|
211 |
up1EquivalentPS = cvtools::modulo(up1EquivalentPS, 2.0*pi);
|
214 |
|
212 |
|
215 |
cv::Mat up1EquivalentST = up1Secondary - up1Tertiary;
|
213 |
cv::Mat up1EquivalentST = up1Secondary - up1Tertiary;
|
216 |
up1EquivalentST = cvtools::modulo(up1EquivalentST, 2.0*pi);
|
214 |
up1EquivalentST = cvtools::modulo(up1EquivalentST, 2.0*pi);
|
217 |
|
215 |
|
218 |
cv::Mat up1Equivalent = up1EquivalentPS - up1EquivalentST;
|
216 |
cv::Mat up1Equivalent = up1EquivalentPS - up1EquivalentST;
|
219 |
up1Equivalent = cvtools::modulo(up1Equivalent, 2.0*pi);
|
217 |
up1Equivalent = cvtools::modulo(up1Equivalent, 2.0*pi);
|
220 |
|
218 |
|
221 |
cv::Mat up1 = unwrapWithCue(up1Primary, up1Equivalent, (float)screenCols/periodPrimary);
|
219 |
cv::Mat up1 = unwrapWithCue(up1Primary, up1Equivalent, (float)screenCols/periodPrimary);
|
222 |
up1 *= screenCols/(2.0*pi);
|
220 |
up1 *= screenCols/(2.0*pi);
|
223 |
cv::Mat amplitude1;
|
221 |
cv::Mat amplitude1;
|
224 |
cv::magnitude(F1Primary[2], -F1Primary[3], amplitude1);
|
222 |
cv::magnitude(F1Primary[2], -F1Primary[3], amplitude1);
|
225 |
|
223 |
|
226 |
//cvtools::writeMat(up0Primary, "up0Primary.mat", "up0Primary");
|
224 |
//cvtools::writeMat(up0Primary, "up0Primary.mat", "up0Primary");
|
227 |
//cvtools::writeMat(up0Secondary, "up0Secondary.mat", "up0Secondary");
|
225 |
//cvtools::writeMat(up0Secondary, "up0Secondary.mat", "up0Secondary");
|
228 |
//cvtools::writeMat(up0Tertiary, "up0Tertiary.mat", "up0Tertiary");
|
226 |
//cvtools::writeMat(up0Tertiary, "up0Tertiary.mat", "up0Tertiary");
|
229 |
//cvtools::writeMat(up0Equivalent, "up0Equivalent.mat", "up0Equivalent");
|
227 |
//cvtools::writeMat(up0Equivalent, "up0Equivalent.mat", "up0Equivalent");
|
230 |
cvtools::writeMat(up0Equivalent2, "up0Equivalent2.mat", "up0Equivalent2");
|
228 |
cvtools::writeMat(up0Equivalent2, "up0Equivalent2.mat", "up0Equivalent2");
|
231 |
//cvtools::writeMat(up0EquivalentPS, "up0EquivalentPS.mat", "up0EquivalentPS");
|
229 |
//cvtools::writeMat(up0EquivalentPS, "up0EquivalentPS.mat", "up0EquivalentPS");
|
232 |
//cvtools::writeMat(up0EquivalentST, "up0EquivalentST.mat", "up0EquivalentST");
|
230 |
//cvtools::writeMat(up0EquivalentST, "up0EquivalentST.mat", "up0EquivalentST");
|
233 |
//cvtools::writeMat(up0, "up0.mat", "up0");
|
231 |
//cvtools::writeMat(up0, "up0.mat", "up0");
|
234 |
//cvtools::writeMat(up1, "up1.mat", "up1");
|
232 |
//cvtools::writeMat(up1, "up1.mat", "up1");
|
235 |
//cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
|
233 |
//cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
|
236 |
|
234 |
|
237 |
// Rectifying homographies (rotation+projections)
|
235 |
// Rectifying homographies (rotation+projections)
|
238 |
cv::Size frameSize(frameCols, frameRows);
|
236 |
cv::Size frameSize(frameCols, frameRows);
|
239 |
cv::Mat R, T;
|
237 |
cv::Mat R, T;
|
240 |
// stereoRectify segfaults unless R is double precision
|
238 |
// stereoRectify segfaults unless R is double precision
|
241 |
cv::Mat(calibration.R1).convertTo(R, CV_64F);
|
239 |
cv::Mat(calibration.R1).convertTo(R, CV_64F);
|
242 |
cv::Mat(calibration.T1).convertTo(T, CV_64F);
|
240 |
cv::Mat(calibration.T1).convertTo(T, CV_64F);
|
243 |
cv::Mat R0, R1, P0, P1, QRect;
|
241 |
cv::Mat R0, R1, P0, P1, QRect;
|
244 |
cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
|
242 |
cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
|
245 |
|
243 |
|
246 |
// Interpolation maps (lens distortion and rectification)
|
244 |
// Interpolation maps (lens distortion and rectification)
|
247 |
cv::Mat map0X, map0Y, map1X, map1Y;
|
245 |
cv::Mat map0X, map0Y, map1X, map1Y;
|
248 |
cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
|
246 |
cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
|
249 |
cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
|
247 |
cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
|
250 |
|
248 |
|
251 |
// Phase remaps
|
249 |
// Phase remaps
|
252 |
cv::Mat up0Rect, up1Rect;
|
250 |
cv::Mat up0Rect, up1Rect;
|
253 |
cv::remap(up0, up0Rect, map0X, map0Y, CV_INTER_LINEAR);
|
251 |
cv::remap(up0, up0Rect, map0X, map0Y, CV_INTER_LINEAR);
|
254 |
cv::remap(up1, up1Rect, map1X, map1Y, CV_INTER_LINEAR);
|
252 |
cv::remap(up1, up1Rect, map1X, map1Y, CV_INTER_LINEAR);
|
255 |
|
253 |
|
256 |
// amplitude remaps
|
254 |
// amplitude remaps
|
257 |
cv::Mat amplitude0Rect, amplitude1Rect;
|
255 |
cv::Mat amplitude0Rect, amplitude1Rect;
|
258 |
cv::remap(amplitude0, amplitude0Rect, map0X, map0Y, CV_INTER_LINEAR);
|
256 |
cv::remap(amplitude0, amplitude0Rect, map0X, map0Y, CV_INTER_LINEAR);
|
259 |
cv::remap(amplitude1, amplitude1Rect, map1X, map1Y, CV_INTER_LINEAR);
|
257 |
cv::remap(amplitude1, amplitude1Rect, map1X, map1Y, CV_INTER_LINEAR);
|
260 |
|
258 |
|
261 |
//cvtools::writeMat(up0Rect, "up0Rect.mat", "up0Rect");
|
259 |
//cvtools::writeMat(up0Rect, "up0Rect.mat", "up0Rect");
|
262 |
//cvtools::writeMat(up1Rect, "up1Rect.mat", "up1Rect");
|
260 |
//cvtools::writeMat(up1Rect, "up1Rect.mat", "up1Rect");
|
263 |
|
261 |
|
264 |
// color debayer and remap
|
262 |
// color debayer and remap
|
265 |
cv::Mat color0Rect, color1Rect;
|
263 |
cv::Mat color0Rect, color1Rect;
|
266 |
// frames0[0].convertTo(color0Rect, CV_8UC1, 1.0/256.0);
|
264 |
// frames0[0].convertTo(color0Rect, CV_8UC1, 1.0/256.0);
|
267 |
cv::cvtColor(frames0[0], color0Rect, CV_BayerBG2RGB);
|
265 |
cv::cvtColor(frames0[0], color0Rect, CV_BayerBG2RGB);
|
268 |
cv::remap(color0Rect, color0Rect, map0X, map0Y, CV_INTER_LINEAR);
|
266 |
cv::remap(color0Rect, color0Rect, map0X, map0Y, CV_INTER_LINEAR);
|
269 |
|
267 |
|
270 |
// frames1[0].convertTo(color1Rect, CV_8UC1, 1.0/256.0);
|
268 |
// frames1[0].convertTo(color1Rect, CV_8UC1, 1.0/256.0);
|
271 |
cv::cvtColor(frames1[0], color1Rect, CV_BayerBG2RGB);
|
269 |
cv::cvtColor(frames1[0], color1Rect, CV_BayerBG2RGB);
|
272 |
cv::remap(color1Rect, color1Rect, map1X, map1Y, CV_INTER_LINEAR);
|
270 |
cv::remap(color1Rect, color1Rect, map1X, map1Y, CV_INTER_LINEAR);
|
273 |
|
271 |
|
274 |
//cvtools::writeMat(frames0Rect[18], "frames0Rect_18.mat", "frames0Rect_18");
|
272 |
//cvtools::writeMat(frames0Rect[18], "frames0Rect_18.mat", "frames0Rect_18");
|
275 |
//cvtools::writeMat(frames0Rect[19], "frames0Rect_19.mat", "frames0Rect_19");
|
273 |
//cvtools::writeMat(frames0Rect[19], "frames0Rect_19.mat", "frames0Rect_19");
|
276 |
|
274 |
|
277 |
//cvtools::writeMat(color0Rect, "color0Rect.mat", "color0Rect");
|
275 |
//cvtools::writeMat(color0Rect, "color0Rect.mat", "color0Rect");
|
278 |
//cvtools::writeMat(color1Rect, "color1Rect.mat", "color1Rect");
|
276 |
//cvtools::writeMat(color1Rect, "color1Rect.mat", "color1Rect");
|
279 |
|
277 |
|
280 |
// On/off remaps
|
278 |
// On/off remaps
|
281 |
cv::Mat frames0OnRect, frames0OffRect;
|
279 |
cv::Mat frames0OnRect, frames0OffRect;
|
282 |
cv::remap(frames0Gray[0], frames0OnRect, map0X, map0Y, CV_INTER_LINEAR);
|
280 |
cv::remap(frames0Gray[0], frames0OnRect, map0X, map0Y, CV_INTER_LINEAR);
|
283 |
cv::remap(frames0Gray[1], frames0OffRect, map0X, map0Y, CV_INTER_LINEAR);
|
281 |
cv::remap(frames0Gray[1], frames0OffRect, map0X, map0Y, CV_INTER_LINEAR);
|
284 |
|
282 |
|
285 |
cv::Mat frames1OnRect, frames1OffRect;
|
283 |
cv::Mat frames1OnRect, frames1OffRect;
|
286 |
cv::remap(frames1Gray[0], frames1OnRect, map1X, map1Y, CV_INTER_LINEAR);
|
284 |
cv::remap(frames1Gray[0], frames1OnRect, map1X, map1Y, CV_INTER_LINEAR);
|
287 |
cv::remap(frames1Gray[1], frames1OffRect, map1X, map1Y, CV_INTER_LINEAR);
|
285 |
cv::remap(frames1Gray[1], frames1OffRect, map1X, map1Y, CV_INTER_LINEAR);
|
288 |
|
286 |
|
289 |
// Occlusion masks
|
287 |
// Occlusion masks
|
290 |
cv::Mat occlusion0Rect, occlusion1Rect;
|
288 |
cv::Mat occlusion0Rect, occlusion1Rect;
|
291 |
cv::subtract(frames0OnRect, frames0OffRect, occlusion0Rect);
|
289 |
cv::subtract(frames0OnRect, frames0OffRect, occlusion0Rect);
|
292 |
occlusion0Rect = (occlusion0Rect > 25) & (occlusion0Rect < 250);
|
290 |
occlusion0Rect = (occlusion0Rect > 25) & (occlusion0Rect < 250);
|
293 |
cv::subtract(frames1OnRect, frames1OffRect, occlusion1Rect);
|
291 |
cv::subtract(frames1OnRect, frames1OffRect, occlusion1Rect);
|
294 |
occlusion1Rect = (occlusion1Rect > 25) & (occlusion1Rect < 250);
|
292 |
occlusion1Rect = (occlusion1Rect > 25) & (occlusion1Rect < 250);
|
295 |
|
293 |
|
296 |
// Threshold on energy at primary frequency
|
294 |
// Threshold on energy at primary frequency
|
297 |
occlusion0Rect = occlusion0Rect & (amplitude0Rect > 5.0*nStepsPrimary);
|
295 |
occlusion0Rect = occlusion0Rect & (amplitude0Rect > 5.0*nStepsPrimary);
|
298 |
occlusion1Rect = occlusion1Rect & (amplitude1Rect > 5.0*nStepsPrimary);
|
296 |
occlusion1Rect = occlusion1Rect & (amplitude1Rect > 5.0*nStepsPrimary);
|
299 |
|
297 |
|
300 |
//cvtools::writeMat(occlusion0Rect, "occlusion0Rect.mat", "occlusion0Rect");
|
298 |
//cvtools::writeMat(occlusion0Rect, "occlusion0Rect.mat", "occlusion0Rect");
|
301 |
//cvtools::writeMat(occlusion1Rect, "occlusion1Rect.mat", "occlusion1Rect");
|
299 |
//cvtools::writeMat(occlusion1Rect, "occlusion1Rect.mat", "occlusion1Rect");
|
302 |
|
300 |
|
303 |
// Erode occlusion masks
|
301 |
// Erode occlusion masks
|
304 |
cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
|
302 |
cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
|
305 |
cv::erode(occlusion0Rect, occlusion0Rect, strel);
|
303 |
cv::erode(occlusion0Rect, occlusion0Rect, strel);
|
306 |
cv::erode(occlusion1Rect, occlusion1Rect, strel);
|
304 |
cv::erode(occlusion1Rect, occlusion1Rect, strel);
|
307 |
|
305 |
|
308 |
// Threshold on gradient of phase
|
306 |
// Threshold on gradient of phase
|
309 |
cv::Mat edges0;
|
307 |
cv::Mat edges0;
|
310 |
cv::Sobel(up0Rect, edges0, -1, 1, 1, 5);
|
308 |
cv::Sobel(up0Rect, edges0, -1, 1, 1, 5);
|
311 |
occlusion0Rect = occlusion0Rect & (abs(edges0) < 150);
|
309 |
occlusion0Rect = occlusion0Rect & (abs(edges0) < 150);
|
312 |
|
310 |
|
313 |
cv::Mat edges1;
|
311 |
cv::Mat edges1;
|
314 |
cv::Sobel(up1Rect, edges1, -1, 1, 1, 5);
|
312 |
cv::Sobel(up1Rect, edges1, -1, 1, 1, 5);
|
315 |
occlusion1Rect = occlusion1Rect & (abs(edges1) < 150);
|
313 |
occlusion1Rect = occlusion1Rect & (abs(edges1) < 150);
|
316 |
|
314 |
|
317 |
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
|
315 |
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
|
318 |
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
|
316 |
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
|
319 |
|
317 |
|
320 |
// Match phase maps
|
318 |
// Match phase maps
|
321 |
int frameRectRows = map0X.rows;
|
319 |
int frameRectRows = map0X.rows;
|
322 |
int frameRectCols = map0X.cols;
|
320 |
int frameRectCols = map0X.cols;
|
323 |
|
321 |
|
324 |
// camera0 against camera1
|
322 |
// camera0 against camera1
|
325 |
std::vector<cv::Vec2f> q0Rect, q1Rect;
|
323 |
std::vector<cv::Vec2f> q0Rect, q1Rect;
|
326 |
for(int row=0; row<frameRectRows; row++){
|
324 |
for(int row=0; row<frameRectRows; row++){
|
327 |
for(int col=0; col<frameRectCols; col++){
|
325 |
for(int col=0; col<frameRectCols; col++){
|
328 |
|
326 |
|
329 |
if(!occlusion0Rect.at<char>(row,col))
|
327 |
if(!occlusion0Rect.at<char>(row,col))
|
330 |
continue;
|
328 |
continue;
|
331 |
|
329 |
|
332 |
float up0i = up0Rect.at<float>(row,col);
|
330 |
float up0i = up0Rect.at<float>(row,col);
|
333 |
for(int col1=0; col1<up1Rect.cols-1; col1++){
|
331 |
for(int col1=0; col1<up1Rect.cols-1; col1++){
|
334 |
|
332 |
|
335 |
if(!occlusion1Rect.at<char>(row,col1) || !occlusion1Rect.at<char>(row,col1+1))
|
333 |
if(!occlusion1Rect.at<char>(row,col1) || !occlusion1Rect.at<char>(row,col1+1))
|
336 |
continue;
|
334 |
continue;
|
337 |
|
335 |
|
338 |
float up1Left = up1Rect.at<float>(row,col1);
|
336 |
float up1Left = up1Rect.at<float>(row,col1);
|
339 |
float up1Right = up1Rect.at<float>(row,col1+1);
|
337 |
float up1Right = up1Rect.at<float>(row,col1+1);
|
340 |
|
338 |
|
341 |
if((up1Left <= up0i) && (up0i <= up1Right) && (up0i-up1Left < 0.5) && (up1Right-up0i < 0.5)){
|
339 |
if((up1Left <= up0i) && (up0i <= up1Right) && (up0i-up1Left < 0.5) && (up1Right-up0i < 0.5)){
|
342 |
|
340 |
|
343 |
float col1i = col1 + (up0i-up1Left)/(up1Right-up1Left);
|
341 |
float col1i = col1 + (up0i-up1Left)/(up1Right-up1Left);
|
344 |
|
342 |
|
345 |
q0Rect.push_back(cv::Point2f(col, row));
|
343 |
q0Rect.push_back(cv::Point2f(col, row));
|
346 |
q1Rect.push_back(cv::Point2f(col1i, row));
|
344 |
q1Rect.push_back(cv::Point2f(col1i, row));
|
347 |
|
345 |
|
348 |
break;
|
346 |
break;
|
349 |
}
|
347 |
}
|
350 |
}
|
348 |
}
|
351 |
}
|
349 |
}
|
352 |
}
|
350 |
}
|
353 |
|
351 |
|
354 |
// // camera1 against camera0
|
352 |
// // camera1 against camera0
|
355 |
// for(int row=0; row<frameRectRows; row++){
|
353 |
// for(int row=0; row<frameRectRows; row++){
|
356 |
// for(int col=0; col<frameRectCols; col++){
|
354 |
// for(int col=0; col<frameRectCols; col++){
|
357 |
|
355 |
|
358 |
// if(!occlusion1Rect.at<char>(row,col))
|
356 |
// if(!occlusion1Rect.at<char>(row,col))
|
359 |
// continue;
|
357 |
// continue;
|
360 |
|
358 |
|
361 |
// float up1i = up1Rect.at<float>(row,col);
|
359 |
// float up1i = up1Rect.at<float>(row,col);
|
362 |
// for(int col0=0; col0<up0Rect.cols-1; col0++){
|
360 |
// for(int col0=0; col0<up0Rect.cols-1; col0++){
|
363 |
|
361 |
|
364 |
// if(!occlusion0Rect.at<char>(row,col0) || !occlusion0Rect.at<char>(row,col0+1))
|
362 |
// if(!occlusion0Rect.at<char>(row,col0) || !occlusion0Rect.at<char>(row,col0+1))
|
365 |
// continue;
|
363 |
// continue;
|
366 |
|
364 |
|
367 |
// float up0Left = up0Rect.at<float>(row,col0);
|
365 |
// float up0Left = up0Rect.at<float>(row,col0);
|
368 |
// float up0Right = up0Rect.at<float>(row,col0+1);
|
366 |
// float up0Right = up0Rect.at<float>(row,col0+1);
|
369 |
|
367 |
|
370 |
// if((up0Left <= up1i) && (up1i <= up0Right) && (up1i-up0Left < 1) && (up0Right-up1i < 1)){
|
368 |
// if((up0Left <= up1i) && (up1i <= up0Right) && (up1i-up0Left < 1) && (up0Right-up1i < 1)){
|
371 |
|
369 |
|
372 |
// float col0i = col0 + (up1i-up0Left)/(up0Right-up0Left);
|
370 |
// float col0i = col0 + (up1i-up0Left)/(up0Right-up0Left);
|
373 |
|
371 |
|
374 |
// q1Rect.push_back(cv::Point2f(col, row));
|
372 |
// q1Rect.push_back(cv::Point2f(col, row));
|
375 |
// q0Rect.push_back(cv::Point2f(col0i, row));
|
373 |
// q0Rect.push_back(cv::Point2f(col0i, row));
|
376 |
|
374 |
|
377 |
// break;
|
375 |
// break;
|
378 |
// }
|
376 |
// }
|
379 |
// }
|
377 |
// }
|
380 |
// }
|
378 |
// }
|
381 |
// }
|
379 |
// }
|
382 |
|
380 |
|
383 |
int nMatches = q0Rect.size();
|
381 |
int nMatches = q0Rect.size();
|
384 |
|
382 |
|
385 |
if(nMatches < 1){
|
383 |
if(nMatches < 1){
|
386 |
Q.resize(0);
|
384 |
Q.resize(0);
|
387 |
color.resize(0);
|
385 |
color.resize(0);
|
388 |
|
386 |
|
389 |
return;
|
387 |
return;
|
390 |
}
|
388 |
}
|
391 |
|
389 |
|
392 |
// Retrieve color information
|
390 |
// Retrieve color information
|
393 |
color.resize(nMatches);
|
391 |
color.resize(nMatches);
|
394 |
for(int i=0; i<nMatches; i++){
|
392 |
for(int i=0; i<nMatches; i++){
|
395 |
|
393 |
|
396 |
cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0Rect[i][1], q0Rect[i][0]);
|
394 |
cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0Rect[i][1], q0Rect[i][0]);
|
397 |
cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1Rect[i][1], q1Rect[i][0]);
|
395 |
cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1Rect[i][1], q1Rect[i][0]);
|
398 |
|
396 |
|
399 |
color[i] = 0.5*c0 + 0.5*c1;
|
397 |
color[i] = 0.5*c0 + 0.5*c1;
|
400 |
}
|
398 |
}
|
401 |
|
399 |
|
402 |
// Triangulate points
|
400 |
// Triangulate points
|
403 |
cv::Mat QMatHomogenous, QMat;
|
401 |
cv::Mat QMatHomogenous, QMat;
|
404 |
cv::triangulatePoints(P0, P1, q0Rect, q1Rect, QMatHomogenous);
|
402 |
cv::triangulatePoints(P0, P1, q0Rect, q1Rect, QMatHomogenous);
|
405 |
cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
|
403 |
cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
|
406 |
|
404 |
|
407 |
// Undo rectification
|
405 |
// Undo rectification
|
408 |
cv::Mat R0Inv;
|
406 |
cv::Mat R0Inv;
|
409 |
cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
|
407 |
cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
|
410 |
QMat = R0Inv*QMat;
|
408 |
QMat = R0Inv*QMat;
|
411 |
|
409 |
|
412 |
cvtools::matToPoints3f(QMat, Q);
|
410 |
cvtools::matToPoints3f(QMat, Q);
|
413 |
|
411 |
|
414 |
}
|
412 |
}
|
415 |
|
413 |
|