128 |
jakw |
1 |
#include "AlgorithmPhaseShiftThreeFreq.h"
|
4 |
jakw |
2 |
#include <math.h>
|
|
|
3 |
|
|
|
4 |
#include "cvtools.h"
|
|
|
5 |
|
|
|
6 |
#ifndef M_PI
|
|
|
7 |
#define M_PI 3.14159265358979323846
|
|
|
8 |
#endif
|
|
|
9 |
|
131 |
jakw |
10 |
static unsigned int nStepsPrimary = 32; // number of shifts/steps in primary
|
129 |
jakw |
11 |
static unsigned int nStepsSecondary = 16; // number of shifts/steps in secondary
|
|
|
12 |
static unsigned int nStepsTertiary = 16; // number of shifts/steps in tertiary
|
131 |
jakw |
13 |
static float nPeriodPrimary = 256; // number of primary periods
|
|
|
14 |
static float nPeriodSecondary = 16; // number of secondary periods
|
4 |
jakw |
15 |
|
41 |
jakw |
16 |
// Algorithm
|
4 |
jakw |
17 |
static cv::Mat computePhaseVector(unsigned int length, float phase, float pitch){
|
|
|
18 |
|
|
|
19 |
cv::Mat phaseVector(length, 1, CV_8UC3);
|
|
|
20 |
//phaseVector.setTo(0);
|
|
|
21 |
|
|
|
22 |
const float pi = M_PI;
|
|
|
23 |
|
|
|
24 |
// Loop through vector
|
|
|
25 |
for(int i=0; i<phaseVector.rows; i++){
|
|
|
26 |
// Amplitude of channels
|
71 |
jakw |
27 |
float amp = 0.5*(1+cos(2*pi*i/pitch - phase));
|
132 |
jakw |
28 |
phaseVector.at<cv::Vec3b>(i, 0) = cv::Vec3b(255.0*amp, 255.0*amp, 255.0*amp);
|
4 |
jakw |
29 |
}
|
|
|
30 |
|
|
|
31 |
return phaseVector;
|
|
|
32 |
}
|
|
|
33 |
|
128 |
jakw |
34 |
AlgorithmPhaseShiftThreeFreq::AlgorithmPhaseShiftThreeFreq(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
|
4 |
jakw |
35 |
|
72 |
jakw |
36 |
// Set N
|
128 |
jakw |
37 |
N = 2+nStepsPrimary+nStepsSecondary+nStepsTertiary;
|
72 |
jakw |
38 |
|
70 |
jakw |
39 |
// all on pattern
|
|
|
40 |
cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
|
|
|
41 |
patterns.push_back(allOn);
|
|
|
42 |
|
|
|
43 |
// all off pattern
|
|
|
44 |
cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
|
|
|
45 |
patterns.push_back(allOff);
|
|
|
46 |
|
4 |
jakw |
47 |
// Precompute encoded patterns
|
|
|
48 |
const float pi = M_PI;
|
|
|
49 |
|
74 |
jakw |
50 |
// Primary encoding patterns
|
118 |
jakw |
51 |
for(unsigned int i=0; i<nStepsPrimary; i++){
|
|
|
52 |
float phase = 2.0*pi/nStepsPrimary * i;
|
131 |
jakw |
53 |
float pitch = screenCols/nPeriodPrimary;
|
70 |
jakw |
54 |
cv::Mat patternI(1,1,CV_8U);
|
|
|
55 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
|
|
56 |
patterns.push_back(patternI.t());
|
|
|
57 |
}
|
4 |
jakw |
58 |
|
74 |
jakw |
59 |
// Secondary encoding patterns
|
118 |
jakw |
60 |
for(unsigned int i=0; i<nStepsSecondary; i++){
|
|
|
61 |
float phase = 2.0*pi/nStepsSecondary * i;
|
131 |
jakw |
62 |
float pitch = screenCols/nPeriodSecondary;
|
72 |
jakw |
63 |
cv::Mat patternI(1,1,CV_8U);
|
70 |
jakw |
64 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
|
|
65 |
patterns.push_back(patternI.t());
|
4 |
jakw |
66 |
}
|
128 |
jakw |
67 |
// Tertiary encoding patterns
|
|
|
68 |
for(unsigned int i=0; i<nStepsTertiary; i++){
|
|
|
69 |
float phase = 2.0*pi/nStepsTertiary * i;
|
131 |
jakw |
70 |
float pitch = screenCols;
|
128 |
jakw |
71 |
cv::Mat patternI(1,1,CV_8U);
|
|
|
72 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
|
|
73 |
patterns.push_back(patternI.t());
|
|
|
74 |
}
|
4 |
jakw |
75 |
|
|
|
76 |
}
|
|
|
77 |
|
128 |
jakw |
78 |
cv::Mat AlgorithmPhaseShiftThreeFreq::getEncodingPattern(unsigned int depth){
|
4 |
jakw |
79 |
return patterns[depth];
|
|
|
80 |
}
|
|
|
81 |
|
|
|
82 |
|
167 |
jakw |
83 |
//// Absolute phase from 3 frames
|
|
|
84 |
//static cv::Mat getPhase(const cv::Mat I1, const cv::Mat I2, const cv::Mat I3){
|
4 |
jakw |
85 |
|
167 |
jakw |
86 |
// cv::Mat_<float> I1_(I1);
|
|
|
87 |
// cv::Mat_<float> I2_(I2);
|
|
|
88 |
// cv::Mat_<float> I3_(I3);
|
70 |
jakw |
89 |
|
167 |
jakw |
90 |
// cv::Mat phase;
|
70 |
jakw |
91 |
|
167 |
jakw |
92 |
// // One call approach
|
|
|
93 |
// cv::phase(2.0*I1_-I3_-I2_, sqrt(3.0)*(I2_-I3_), phase);
|
|
|
94 |
// return phase;
|
70 |
jakw |
95 |
|
167 |
jakw |
96 |
//}
|
70 |
jakw |
97 |
|
|
|
98 |
// Phase unwrapping by means of a phase cue
|
128 |
jakw |
99 |
static cv::Mat unwrapWithCue(const cv::Mat up, const cv::Mat upCue, float nPhases){
|
70 |
jakw |
100 |
|
4 |
jakw |
101 |
const float pi = M_PI;
|
|
|
102 |
|
70 |
jakw |
103 |
// Determine number of jumps
|
128 |
jakw |
104 |
cv::Mat P = (upCue*nPhases-up)/(2.0*pi);
|
4 |
jakw |
105 |
|
70 |
jakw |
106 |
// Round to integers
|
|
|
107 |
P.convertTo(P, CV_8U);
|
|
|
108 |
P.convertTo(P, CV_32F);
|
4 |
jakw |
109 |
|
70 |
jakw |
110 |
// Add to phase
|
|
|
111 |
cv::Mat upUnwrapped = up + P*2*pi;
|
4 |
jakw |
112 |
|
70 |
jakw |
113 |
// Scale to range [0; 2pi]
|
|
|
114 |
upUnwrapped *= 1.0/nPhases;
|
|
|
115 |
|
|
|
116 |
return upUnwrapped;
|
4 |
jakw |
117 |
}
|
|
|
118 |
|
70 |
jakw |
119 |
// Absolute phase and magnitude from N frames
|
128 |
jakw |
120 |
static std::vector<cv::Mat> getDFTComponents(const std::vector<cv::Mat> frames){
|
70 |
jakw |
121 |
|
|
|
122 |
unsigned int N = frames.size();
|
|
|
123 |
|
71 |
jakw |
124 |
// std::vector<cv::Mat> framesReverse = frames;
|
|
|
125 |
// std::reverse(framesReverse.begin(), framesReverse.end());
|
70 |
jakw |
126 |
|
|
|
127 |
// DFT approach
|
|
|
128 |
cv::Mat I;
|
|
|
129 |
cv::merge(frames, I);
|
|
|
130 |
unsigned int w = I.cols;
|
|
|
131 |
unsigned int h = I.rows;
|
|
|
132 |
I = I.reshape(1, h*w);
|
|
|
133 |
I.convertTo(I, CV_32F);
|
|
|
134 |
cv::Mat fI;
|
|
|
135 |
cv::dft(I, fI, cv::DFT_ROWS + cv::DFT_COMPLEX_OUTPUT);
|
|
|
136 |
fI = fI.reshape(N*2, h);
|
|
|
137 |
|
|
|
138 |
std::vector<cv::Mat> fIcomp;
|
|
|
139 |
cv::split(fI, fIcomp);
|
|
|
140 |
|
|
|
141 |
return fIcomp;
|
|
|
142 |
|
|
|
143 |
}
|
|
|
144 |
|
128 |
jakw |
145 |
void AlgorithmPhaseShiftThreeFreq::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
|
4 |
jakw |
146 |
|
70 |
jakw |
147 |
const float pi = M_PI;
|
|
|
148 |
|
|
|
149 |
assert(frames0.size() == N);
|
|
|
150 |
assert(frames1.size() == N);
|
|
|
151 |
|
|
|
152 |
int frameRows = frames0[0].rows;
|
|
|
153 |
int frameCols = frames0[0].cols;
|
|
|
154 |
|
179 |
jakw |
155 |
// Rectifying homographies (rotation+projections)
|
|
|
156 |
cv::Size frameSize(frameCols, frameRows);
|
|
|
157 |
cv::Mat R, T;
|
|
|
158 |
// stereoRectify segfaults unless R is double precision
|
|
|
159 |
cv::Mat(calibration.R1).convertTo(R, CV_64F);
|
|
|
160 |
cv::Mat(calibration.T1).convertTo(T, CV_64F);
|
|
|
161 |
cv::Mat R0, R1, P0, P1, QRect;
|
|
|
162 |
cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
|
|
|
163 |
|
|
|
164 |
// Interpolation maps (lens distortion and rectification)
|
|
|
165 |
cv::Mat map0X, map0Y, map1X, map1Y;
|
|
|
166 |
cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
|
|
|
167 |
cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
|
|
|
168 |
|
|
|
169 |
|
|
|
170 |
// Gray-scale and remap
|
|
|
171 |
std::vector<cv::Mat> frames0Rect(N);
|
|
|
172 |
std::vector<cv::Mat> frames1Rect(N);
|
167 |
jakw |
173 |
for(unsigned int i=0; i<N; i++){
|
179 |
jakw |
174 |
cv::Mat temp;
|
|
|
175 |
cv::cvtColor(frames0[i], temp, CV_BayerBG2GRAY);
|
|
|
176 |
cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
|
|
|
177 |
cv::cvtColor(frames1[i], temp, CV_BayerBG2GRAY);
|
|
|
178 |
cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
|
70 |
jakw |
179 |
}
|
|
|
180 |
|
|
|
181 |
// Decode camera0
|
179 |
jakw |
182 |
std::vector<cv::Mat> frames0Primary(frames0Rect.begin()+2, frames0Rect.begin()+2+nStepsPrimary);
|
|
|
183 |
std::vector<cv::Mat> frames0Secondary(frames0Rect.begin()+2+nStepsPrimary, frames0Rect.end()-nStepsTertiary);
|
|
|
184 |
std::vector<cv::Mat> frames0Tertiary(frames0Rect.end()-nStepsTertiary, frames0Rect.end());
|
129 |
jakw |
185 |
|
76 |
jakw |
186 |
std::vector<cv::Mat> F0Primary = getDFTComponents(frames0Primary);
|
74 |
jakw |
187 |
cv::Mat up0Primary;
|
76 |
jakw |
188 |
cv::phase(F0Primary[2], -F0Primary[3], up0Primary);
|
|
|
189 |
std::vector<cv::Mat> F0Secondary = getDFTComponents(frames0Secondary);
|
|
|
190 |
cv::Mat up0Secondary;
|
|
|
191 |
cv::phase(F0Secondary[2], -F0Secondary[3], up0Secondary);
|
128 |
jakw |
192 |
std::vector<cv::Mat> F0Tertiary = getDFTComponents(frames0Tertiary);
|
|
|
193 |
cv::Mat up0Tertiary;
|
|
|
194 |
cv::phase(F0Tertiary[2], -F0Tertiary[3], up0Tertiary);
|
|
|
195 |
|
131 |
jakw |
196 |
cv::Mat up0Unwrap = unwrapWithCue(up0Secondary, up0Tertiary, nPeriodSecondary);
|
|
|
197 |
cv::Mat up0 = unwrapWithCue(up0Primary, up0Unwrap, nPeriodPrimary);
|
128 |
jakw |
198 |
up0 *= screenCols/(2.0*pi);
|
|
|
199 |
cv::Mat amplitude0;
|
|
|
200 |
cv::magnitude(F0Primary[2], -F0Primary[3], amplitude0);
|
70 |
jakw |
201 |
|
|
|
202 |
// Decode camera1
|
179 |
jakw |
203 |
std::vector<cv::Mat> frames1Primary(frames1Rect.begin()+2, frames1Rect.begin()+2+nStepsPrimary);
|
|
|
204 |
std::vector<cv::Mat> frames1Secondary(frames1Rect.begin()+2+nStepsPrimary, frames1Rect.end()-nStepsTertiary);
|
|
|
205 |
std::vector<cv::Mat> frames1Tertiary(frames1Rect.end()-nStepsTertiary, frames1Rect.end());
|
129 |
jakw |
206 |
|
76 |
jakw |
207 |
std::vector<cv::Mat> F1Primary = getDFTComponents(frames1Primary);
|
74 |
jakw |
208 |
cv::Mat up1Primary;
|
76 |
jakw |
209 |
cv::phase(F1Primary[2], -F1Primary[3], up1Primary);
|
|
|
210 |
std::vector<cv::Mat> F1Secondary = getDFTComponents(frames1Secondary);
|
|
|
211 |
cv::Mat up1Secondary;
|
|
|
212 |
cv::phase(F1Secondary[2], -F1Secondary[3], up1Secondary);
|
128 |
jakw |
213 |
std::vector<cv::Mat> F1Tertiary = getDFTComponents(frames1Tertiary);
|
|
|
214 |
cv::Mat up1Tertiary;
|
|
|
215 |
cv::phase(F1Tertiary[2], -F1Tertiary[3], up1Tertiary);
|
|
|
216 |
|
131 |
jakw |
217 |
cv::Mat up1Unwrap = unwrapWithCue(up1Secondary, up1Tertiary, nPeriodSecondary);
|
|
|
218 |
cv::Mat up1 = unwrapWithCue(up1Primary, up1Unwrap, nPeriodPrimary);
|
128 |
jakw |
219 |
up1 *= screenCols/(2.0*pi);
|
|
|
220 |
cv::Mat amplitude1;
|
|
|
221 |
cv::magnitude(F1Primary[2], -F1Primary[3], amplitude1);
|
70 |
jakw |
222 |
|
129 |
jakw |
223 |
//cvtools::writeMat(up0Primary, "up0Primary.mat", "up0Primary");
|
|
|
224 |
//cvtools::writeMat(up0Secondary, "up0Secondary.mat", "up0Secondary");
|
|
|
225 |
//cvtools::writeMat(up0Tertiary, "up0Tertiary.mat", "up0Tertiary");
|
131 |
jakw |
226 |
//cvtools::writeMat(up0Unwrap, "up0Unwrap.mat", "up0Unwrap");
|
129 |
jakw |
227 |
//cvtools::writeMat(up0, "up0.mat", "up0");
|
|
|
228 |
//cvtools::writeMat(up1, "up1.mat", "up1");
|
|
|
229 |
//cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
|
71 |
jakw |
230 |
|
179 |
jakw |
231 |
//cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
|
|
|
232 |
//cvtools::writeMat(amplitude1, "amplitude1.mat", "amplitude1");
|
70 |
jakw |
233 |
|
179 |
jakw |
234 |
// Color debayer and remap
|
|
|
235 |
cv::Mat color0, color1;
|
|
|
236 |
cv::cvtColor(frames0[0], color0, CV_BayerBG2RGB);
|
|
|
237 |
cv::cvtColor(frames1[0], color1, CV_BayerBG2RGB);
|
70 |
jakw |
238 |
|
179 |
jakw |
239 |
//cvtools::writeMat(color0, "color0.mat", "color0");
|
|
|
240 |
//cvtools::writeMat(color1, "color1.mat", "color1");
|
70 |
jakw |
241 |
|
|
|
242 |
// Occlusion masks
|
179 |
jakw |
243 |
cv::Mat occlusion0, occlusion1;
|
|
|
244 |
cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0);
|
|
|
245 |
occlusion0 = (occlusion0 > 5) & (occlusion0 < 250);
|
|
|
246 |
cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1);
|
|
|
247 |
occlusion1 = (occlusion1 > 5) & (occlusion1 < 250);
|
70 |
jakw |
248 |
|
131 |
jakw |
249 |
// // Threshold on energy at primary frequency
|
179 |
jakw |
250 |
// occlusion0 = occlusion0 & (amplitude0 > 5.0*nStepsPrimary);
|
|
|
251 |
// occlusion1 = occlusion1 & (amplitude1 > 5.0*nStepsPrimary);
|
128 |
jakw |
252 |
|
179 |
jakw |
253 |
//cvtools::writeMat(occlusion0, "occlusion0.mat", "occlusion0");
|
|
|
254 |
//cvtools::writeMat(occlusion1, "occlusion1.mat", "occlusion1");
|
74 |
jakw |
255 |
|
131 |
jakw |
256 |
// // Erode occlusion masks
|
|
|
257 |
// cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
|
179 |
jakw |
258 |
// cv::erode(occlusion0, occlusion0, strel);
|
|
|
259 |
// cv::erode(occlusion1, occlusion1, strel);
|
70 |
jakw |
260 |
|
71 |
jakw |
261 |
// Threshold on gradient of phase
|
|
|
262 |
cv::Mat edges0;
|
179 |
jakw |
263 |
cv::Sobel(up0, edges0, -1, 1, 1, 5);
|
|
|
264 |
occlusion0 = occlusion0 & (abs(edges0) < 150);
|
71 |
jakw |
265 |
cv::Mat edges1;
|
179 |
jakw |
266 |
cv::Sobel(up1, edges1, -1, 1, 1, 5);
|
|
|
267 |
occlusion1 = occlusion1 & (abs(edges1) < 150);
|
71 |
jakw |
268 |
|
74 |
jakw |
269 |
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
|
|
|
270 |
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
|
71 |
jakw |
271 |
|
70 |
jakw |
272 |
// Match phase maps
|
|
|
273 |
int frameRectRows = map0X.rows;
|
|
|
274 |
int frameRectCols = map0X.cols;
|
|
|
275 |
|
|
|
276 |
// camera0 against camera1
|
179 |
jakw |
277 |
std::vector<cv::Vec2f> q0, q1;
|
70 |
jakw |
278 |
for(int row=0; row<frameRectRows; row++){
|
|
|
279 |
for(int col=0; col<frameRectCols; col++){
|
|
|
280 |
|
179 |
jakw |
281 |
if(!occlusion0.at<char>(row,col))
|
70 |
jakw |
282 |
continue;
|
|
|
283 |
|
179 |
jakw |
284 |
float up0i = up0.at<float>(row,col);
|
|
|
285 |
for(int col1=0; col1<up1.cols-1; col1++){
|
70 |
jakw |
286 |
|
179 |
jakw |
287 |
if(!occlusion1.at<char>(row,col1) || !occlusion1.at<char>(row,col1+1))
|
70 |
jakw |
288 |
continue;
|
|
|
289 |
|
179 |
jakw |
290 |
float up1Left = up1.at<float>(row,col1);
|
|
|
291 |
float up1Right = up1.at<float>(row,col1+1);
|
70 |
jakw |
292 |
|
131 |
jakw |
293 |
if((up1Left <= up0i) && (up0i <= up1Right) && (up0i-up1Left < 1.0) && (up1Right-up0i < 1.0)){
|
70 |
jakw |
294 |
|
|
|
295 |
float col1i = col1 + (up0i-up1Left)/(up1Right-up1Left);
|
|
|
296 |
|
179 |
jakw |
297 |
q0.push_back(cv::Point2f(col, row));
|
|
|
298 |
q1.push_back(cv::Point2f(col1i, row));
|
71 |
jakw |
299 |
|
|
|
300 |
break;
|
70 |
jakw |
301 |
}
|
|
|
302 |
}
|
|
|
303 |
}
|
|
|
304 |
}
|
|
|
305 |
|
179 |
jakw |
306 |
int nMatches = q0.size();
|
70 |
jakw |
307 |
|
|
|
308 |
if(nMatches < 1){
|
|
|
309 |
Q.resize(0);
|
|
|
310 |
color.resize(0);
|
|
|
311 |
|
|
|
312 |
return;
|
|
|
313 |
}
|
|
|
314 |
|
|
|
315 |
// Retrieve color information
|
|
|
316 |
color.resize(nMatches);
|
|
|
317 |
for(int i=0; i<nMatches; i++){
|
|
|
318 |
|
179 |
jakw |
319 |
cv::Vec3b c0 = color0.at<cv::Vec3b>(q0[i][1], q0[i][0]);
|
|
|
320 |
cv::Vec3b c1 = color1.at<cv::Vec3b>(q1[i][1], q1[i][0]);
|
70 |
jakw |
321 |
|
|
|
322 |
color[i] = 0.5*c0 + 0.5*c1;
|
|
|
323 |
}
|
|
|
324 |
|
|
|
325 |
// Triangulate points
|
|
|
326 |
cv::Mat QMatHomogenous, QMat;
|
179 |
jakw |
327 |
cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
|
70 |
jakw |
328 |
cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
|
|
|
329 |
|
|
|
330 |
// Undo rectification
|
|
|
331 |
cv::Mat R0Inv;
|
|
|
332 |
cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
|
|
|
333 |
QMat = R0Inv*QMat;
|
|
|
334 |
|
|
|
335 |
cvtools::matToPoints3f(QMat, Q);
|
|
|
336 |
|
4 |
jakw |
337 |
}
|