Subversion Repositories seema-scanner

Rev

Rev 167 | Rev 182 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
128 jakw 1
#include "AlgorithmPhaseShiftThreeFreq.h"
4 jakw 2
#include <math.h>
3
 
4
#include "cvtools.h"
5
 
6
#ifndef M_PI
7
    #define M_PI 3.14159265358979323846
8
#endif
9
 
131 jakw 10
static unsigned int nStepsPrimary = 32; // number of shifts/steps in primary
129 jakw 11
static unsigned int nStepsSecondary = 16; // number of shifts/steps in secondary
12
static unsigned int nStepsTertiary = 16; // number of shifts/steps in tertiary
131 jakw 13
static float nPeriodPrimary = 256; // number of primary periods
14
static float nPeriodSecondary = 16; // number of secondary periods
4 jakw 15
 
41 jakw 16
// Algorithm
4 jakw 17
static cv::Mat computePhaseVector(unsigned int length, float phase, float pitch){
18
 
19
    cv::Mat phaseVector(length, 1, CV_8UC3);
20
    //phaseVector.setTo(0);
21
 
22
    const float pi = M_PI;
23
 
24
    // Loop through vector
25
    for(int i=0; i<phaseVector.rows; i++){
26
        // Amplitude of channels
71 jakw 27
        float amp = 0.5*(1+cos(2*pi*i/pitch - phase));
132 jakw 28
        phaseVector.at<cv::Vec3b>(i, 0) = cv::Vec3b(255.0*amp, 255.0*amp, 255.0*amp);
4 jakw 29
    }
30
 
31
    return phaseVector;
32
}
33
 
128 jakw 34
AlgorithmPhaseShiftThreeFreq::AlgorithmPhaseShiftThreeFreq(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
4 jakw 35
 
72 jakw 36
    // Set N
128 jakw 37
    N = 2+nStepsPrimary+nStepsSecondary+nStepsTertiary;
72 jakw 38
 
70 jakw 39
    // all on pattern
40
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
41
    patterns.push_back(allOn);
42
 
43
    // all off pattern
44
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
45
    patterns.push_back(allOff);
46
 
4 jakw 47
    // Precompute encoded patterns
48
    const float pi = M_PI;
49
 
74 jakw 50
    // Primary encoding patterns
118 jakw 51
    for(unsigned int i=0; i<nStepsPrimary; i++){
52
        float phase = 2.0*pi/nStepsPrimary * i;
131 jakw 53
        float pitch = screenCols/nPeriodPrimary;
70 jakw 54
        cv::Mat patternI(1,1,CV_8U);
55
        patternI = computePhaseVector(screenCols, phase, pitch);
56
        patterns.push_back(patternI.t());
57
    }
4 jakw 58
 
74 jakw 59
    // Secondary encoding patterns
118 jakw 60
    for(unsigned int i=0; i<nStepsSecondary; i++){
61
        float phase = 2.0*pi/nStepsSecondary * i;
131 jakw 62
        float pitch = screenCols/nPeriodSecondary;
72 jakw 63
        cv::Mat patternI(1,1,CV_8U);
70 jakw 64
        patternI = computePhaseVector(screenCols, phase, pitch);
65
        patterns.push_back(patternI.t());
4 jakw 66
    }
128 jakw 67
    // Tertiary encoding patterns
68
    for(unsigned int i=0; i<nStepsTertiary; i++){
69
        float phase = 2.0*pi/nStepsTertiary * i;
131 jakw 70
        float pitch = screenCols;
128 jakw 71
        cv::Mat patternI(1,1,CV_8U);
72
        patternI = computePhaseVector(screenCols, phase, pitch);
73
        patterns.push_back(patternI.t());
74
    }
4 jakw 75
 
76
}
77
 
128 jakw 78
cv::Mat AlgorithmPhaseShiftThreeFreq::getEncodingPattern(unsigned int depth){
4 jakw 79
    return patterns[depth];
80
}
81
 
82
 
167 jakw 83
//// Absolute phase from 3 frames
84
//static cv::Mat getPhase(const cv::Mat I1, const cv::Mat I2, const cv::Mat I3){
4 jakw 85
 
167 jakw 86
//    cv::Mat_<float> I1_(I1);
87
//    cv::Mat_<float> I2_(I2);
88
//    cv::Mat_<float> I3_(I3);
70 jakw 89
 
167 jakw 90
//    cv::Mat phase;
70 jakw 91
 
167 jakw 92
//    // One call approach
93
//    cv::phase(2.0*I1_-I3_-I2_, sqrt(3.0)*(I2_-I3_), phase);
94
//    return phase;
70 jakw 95
 
167 jakw 96
//}
70 jakw 97
 
98
// Phase unwrapping by means of a phase cue
128 jakw 99
static cv::Mat unwrapWithCue(const cv::Mat up, const cv::Mat upCue, float nPhases){
70 jakw 100
 
4 jakw 101
    const float pi = M_PI;
102
 
70 jakw 103
    // Determine number of jumps
128 jakw 104
    cv::Mat P = (upCue*nPhases-up)/(2.0*pi);
4 jakw 105
 
70 jakw 106
    // Round to integers
107
    P.convertTo(P, CV_8U);
108
    P.convertTo(P, CV_32F);
4 jakw 109
 
70 jakw 110
    // Add to phase
111
    cv::Mat upUnwrapped = up + P*2*pi;
4 jakw 112
 
70 jakw 113
    // Scale to range [0; 2pi]
114
    upUnwrapped *= 1.0/nPhases;
115
 
116
    return upUnwrapped;
4 jakw 117
}
118
 
70 jakw 119
// Absolute phase and magnitude from N frames
128 jakw 120
static std::vector<cv::Mat> getDFTComponents(const std::vector<cv::Mat> frames){
70 jakw 121
 
122
    unsigned int N = frames.size();
123
 
71 jakw 124
//    std::vector<cv::Mat> framesReverse = frames;
125
//    std::reverse(framesReverse.begin(), framesReverse.end());
70 jakw 126
 
127
    // DFT approach
128
    cv::Mat I;
129
    cv::merge(frames, I);
130
    unsigned int w = I.cols;
131
    unsigned int h = I.rows;
132
    I = I.reshape(1, h*w);
133
    I.convertTo(I, CV_32F);
134
    cv::Mat fI;
135
    cv::dft(I, fI, cv::DFT_ROWS + cv::DFT_COMPLEX_OUTPUT);
136
    fI = fI.reshape(N*2, h);
137
 
138
    std::vector<cv::Mat> fIcomp;
139
    cv::split(fI, fIcomp);
140
 
141
    return fIcomp;
142
 
143
}
144
 
128 jakw 145
void AlgorithmPhaseShiftThreeFreq::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
4 jakw 146
 
70 jakw 147
    const float pi = M_PI;
148
 
149
    assert(frames0.size() == N);
150
    assert(frames1.size() == N);
151
 
152
    int frameRows = frames0[0].rows;
153
    int frameCols = frames0[0].cols;
154
 
179 jakw 155
    // Rectifying homographies (rotation+projections)
156
    cv::Size frameSize(frameCols, frameRows);
157
    cv::Mat R, T;
158
    // stereoRectify segfaults unless R is double precision
159
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
160
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
161
    cv::Mat R0, R1, P0, P1, QRect;
162
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
163
 
164
    // Interpolation maps (lens distortion and rectification)
165
    cv::Mat map0X, map0Y, map1X, map1Y;
166
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
167
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
168
 
169
 
170
    // Gray-scale and remap
171
    std::vector<cv::Mat> frames0Rect(N);
172
    std::vector<cv::Mat> frames1Rect(N);
167 jakw 173
    for(unsigned int i=0; i<N; i++){
179 jakw 174
        cv::Mat temp;
175
        cv::cvtColor(frames0[i], temp, CV_BayerBG2GRAY);
176
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
177
        cv::cvtColor(frames1[i], temp, CV_BayerBG2GRAY);
178
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
70 jakw 179
    }
180
 
181
    // Decode camera0
179 jakw 182
    std::vector<cv::Mat> frames0Primary(frames0Rect.begin()+2, frames0Rect.begin()+2+nStepsPrimary);
183
    std::vector<cv::Mat> frames0Secondary(frames0Rect.begin()+2+nStepsPrimary, frames0Rect.end()-nStepsTertiary);
184
    std::vector<cv::Mat> frames0Tertiary(frames0Rect.end()-nStepsTertiary, frames0Rect.end());
129 jakw 185
 
76 jakw 186
    std::vector<cv::Mat> F0Primary = getDFTComponents(frames0Primary);
74 jakw 187
    cv::Mat up0Primary;
76 jakw 188
    cv::phase(F0Primary[2], -F0Primary[3], up0Primary);
189
    std::vector<cv::Mat> F0Secondary = getDFTComponents(frames0Secondary);
190
    cv::Mat up0Secondary;
191
    cv::phase(F0Secondary[2], -F0Secondary[3], up0Secondary);
128 jakw 192
    std::vector<cv::Mat> F0Tertiary = getDFTComponents(frames0Tertiary);
193
    cv::Mat up0Tertiary;
194
    cv::phase(F0Tertiary[2], -F0Tertiary[3], up0Tertiary);
195
 
131 jakw 196
    cv::Mat up0Unwrap = unwrapWithCue(up0Secondary, up0Tertiary, nPeriodSecondary);
197
    cv::Mat up0 = unwrapWithCue(up0Primary, up0Unwrap, nPeriodPrimary);
128 jakw 198
    up0 *= screenCols/(2.0*pi);
199
    cv::Mat amplitude0;
200
    cv::magnitude(F0Primary[2], -F0Primary[3], amplitude0);
70 jakw 201
 
202
    // Decode camera1
179 jakw 203
    std::vector<cv::Mat> frames1Primary(frames1Rect.begin()+2, frames1Rect.begin()+2+nStepsPrimary);
204
    std::vector<cv::Mat> frames1Secondary(frames1Rect.begin()+2+nStepsPrimary, frames1Rect.end()-nStepsTertiary);
205
    std::vector<cv::Mat> frames1Tertiary(frames1Rect.end()-nStepsTertiary, frames1Rect.end());
129 jakw 206
 
76 jakw 207
    std::vector<cv::Mat> F1Primary = getDFTComponents(frames1Primary);
74 jakw 208
    cv::Mat up1Primary;
76 jakw 209
    cv::phase(F1Primary[2], -F1Primary[3], up1Primary);
210
    std::vector<cv::Mat> F1Secondary = getDFTComponents(frames1Secondary);
211
    cv::Mat up1Secondary;
212
    cv::phase(F1Secondary[2], -F1Secondary[3], up1Secondary);
128 jakw 213
    std::vector<cv::Mat> F1Tertiary = getDFTComponents(frames1Tertiary);
214
    cv::Mat up1Tertiary;
215
    cv::phase(F1Tertiary[2], -F1Tertiary[3], up1Tertiary);
216
 
131 jakw 217
    cv::Mat up1Unwrap = unwrapWithCue(up1Secondary, up1Tertiary, nPeriodSecondary);
218
    cv::Mat up1 = unwrapWithCue(up1Primary, up1Unwrap, nPeriodPrimary);
128 jakw 219
    up1 *= screenCols/(2.0*pi);
220
    cv::Mat amplitude1;
221
    cv::magnitude(F1Primary[2], -F1Primary[3], amplitude1);
70 jakw 222
 
129 jakw 223
//cvtools::writeMat(up0Primary, "up0Primary.mat", "up0Primary");
224
//cvtools::writeMat(up0Secondary, "up0Secondary.mat", "up0Secondary");
225
//cvtools::writeMat(up0Tertiary, "up0Tertiary.mat", "up0Tertiary");
131 jakw 226
//cvtools::writeMat(up0Unwrap, "up0Unwrap.mat", "up0Unwrap");
129 jakw 227
//cvtools::writeMat(up0, "up0.mat", "up0");
228
//cvtools::writeMat(up1, "up1.mat", "up1");
229
//cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
71 jakw 230
 
179 jakw 231
//cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
232
//cvtools::writeMat(amplitude1, "amplitude1.mat", "amplitude1");
70 jakw 233
 
179 jakw 234
    // Color debayer and remap
235
    cv::Mat color0, color1;
236
    cv::cvtColor(frames0[0], color0, CV_BayerBG2RGB);
237
    cv::cvtColor(frames1[0], color1, CV_BayerBG2RGB);
70 jakw 238
 
179 jakw 239
//cvtools::writeMat(color0, "color0.mat", "color0");
240
//cvtools::writeMat(color1, "color1.mat", "color1");
70 jakw 241
 
242
    // Occlusion masks
179 jakw 243
    cv::Mat occlusion0, occlusion1;
244
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0);
245
    occlusion0 = (occlusion0 > 5) & (occlusion0 < 250);
246
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1);
247
    occlusion1 = (occlusion1 > 5) & (occlusion1 < 250);
70 jakw 248
 
131 jakw 249
//    // Threshold on energy at primary frequency
179 jakw 250
//    occlusion0 = occlusion0 & (amplitude0 > 5.0*nStepsPrimary);
251
//    occlusion1 = occlusion1 & (amplitude1 > 5.0*nStepsPrimary);
128 jakw 252
 
179 jakw 253
//cvtools::writeMat(occlusion0, "occlusion0.mat", "occlusion0");
254
//cvtools::writeMat(occlusion1, "occlusion1.mat", "occlusion1");
74 jakw 255
 
131 jakw 256
//    // Erode occlusion masks
257
//    cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
179 jakw 258
//    cv::erode(occlusion0, occlusion0, strel);
259
//    cv::erode(occlusion1, occlusion1, strel);
70 jakw 260
 
71 jakw 261
    // Threshold on gradient of phase
262
    cv::Mat edges0;
179 jakw 263
    cv::Sobel(up0, edges0, -1, 1, 1, 5);
264
    occlusion0 = occlusion0 & (abs(edges0) < 150);
71 jakw 265
    cv::Mat edges1;
179 jakw 266
    cv::Sobel(up1, edges1, -1, 1, 1, 5);
267
    occlusion1 = occlusion1 & (abs(edges1) < 150);
71 jakw 268
 
74 jakw 269
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
270
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
71 jakw 271
 
70 jakw 272
    // Match phase maps
273
    int frameRectRows = map0X.rows;
274
    int frameRectCols = map0X.cols;
275
 
276
    // camera0 against camera1
179 jakw 277
    std::vector<cv::Vec2f> q0, q1;
70 jakw 278
    for(int row=0; row<frameRectRows; row++){
279
        for(int col=0; col<frameRectCols; col++){
280
 
179 jakw 281
            if(!occlusion0.at<char>(row,col))
70 jakw 282
                continue;
283
 
179 jakw 284
            float up0i = up0.at<float>(row,col);
285
            for(int col1=0; col1<up1.cols-1; col1++){
70 jakw 286
 
179 jakw 287
                if(!occlusion1.at<char>(row,col1) || !occlusion1.at<char>(row,col1+1))
70 jakw 288
                    continue;
289
 
179 jakw 290
                float up1Left = up1.at<float>(row,col1);
291
                float up1Right = up1.at<float>(row,col1+1);
70 jakw 292
 
131 jakw 293
                if((up1Left <= up0i) && (up0i <= up1Right) && (up0i-up1Left < 1.0) && (up1Right-up0i < 1.0)){
70 jakw 294
 
295
                    float col1i = col1 + (up0i-up1Left)/(up1Right-up1Left);
296
 
179 jakw 297
                    q0.push_back(cv::Point2f(col, row));
298
                    q1.push_back(cv::Point2f(col1i, row));
71 jakw 299
 
300
                    break;
70 jakw 301
                }
302
            }
303
        }
304
    }
305
 
179 jakw 306
    int nMatches = q0.size();
70 jakw 307
 
308
    if(nMatches < 1){
309
        Q.resize(0);
310
        color.resize(0);
311
 
312
        return;
313
    }
314
 
315
    // Retrieve color information
316
    color.resize(nMatches);
317
    for(int i=0; i<nMatches; i++){
318
 
179 jakw 319
        cv::Vec3b c0 = color0.at<cv::Vec3b>(q0[i][1], q0[i][0]);
320
        cv::Vec3b c1 = color1.at<cv::Vec3b>(q1[i][1], q1[i][0]);
70 jakw 321
 
322
        color[i] = 0.5*c0 + 0.5*c1;
323
    }
324
 
325
    // Triangulate points
326
    cv::Mat QMatHomogenous, QMat;
179 jakw 327
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
70 jakw 328
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
329
 
330
    // Undo rectification
331
    cv::Mat R0Inv;
332
    cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
333
    QMat = R0Inv*QMat;
334
 
335
    cvtools::matToPoints3f(QMat, Q);
336
 
4 jakw 337
}