Subversion Repositories seema-scanner

Rev

Rev 185 | Rev 188 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
182 jakw 1
//
2
// Three Frequency Phase Shifting using the Heterodyne Principle
3
//
4
// This implementation follows "Reich, Ritter, Thesing, White light heterodyne principle for 3D-measurement", SPIE (1997)
5
//
6
// The number of periods in the primary and secondary frequencies can be chosen freely, but small changes can have a considerable impact on quality.
7
// The number of phase shifts can be chosen freely (min. 3), and higher values reduce the effects of image noise. They also allow us to filter bad points based on energy at non-primary frequencies.
8
//
9
 
10
 
128 jakw 11
#include "AlgorithmPhaseShiftThreeFreq.h"
4 jakw 12
#include <math.h>
13
 
14
#include "cvtools.h"
182 jakw 15
#include "algorithmtools.h"
4 jakw 16
 
17
#ifndef M_PI
18
    #define M_PI 3.14159265358979323846
19
#endif
20
 
182 jakw 21
static unsigned int nStepsPrimary = 8; // number of shifts/steps in primary
22
static unsigned int nStepsSecondary = 8; // number of shifts/steps in secondary
23
static unsigned int nStepsTertiary = 8; // number of shifts/steps in tertiary
24
static float nPeriodsPrimary = 24; // primary period
25
static float nPeriodsSecondary = 30; // primary period
4 jakw 26
 
128 jakw 27
AlgorithmPhaseShiftThreeFreq::AlgorithmPhaseShiftThreeFreq(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
4 jakw 28
 
72 jakw 29
    // Set N
128 jakw 30
    N = 2+nStepsPrimary+nStepsSecondary+nStepsTertiary;
72 jakw 31
 
182 jakw 32
    // Determine the tertiary period to fulfill the heterodyne condition
33
    float nPeriodsTertiary = (screenCols*nPeriodsPrimary*nPeriodsSecondary)/(nPeriodsPrimary*nPeriodsSecondary+2*screenCols*nPeriodsPrimary-screenCols*nPeriodsSecondary);
34
 
70 jakw 35
    // all on pattern
36
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
37
    patterns.push_back(allOn);
38
 
39
    // all off pattern
40
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
41
    patterns.push_back(allOff);
42
 
4 jakw 43
    // Precompute encoded patterns
44
    const float pi = M_PI;
45
 
74 jakw 46
    // Primary encoding patterns
118 jakw 47
    for(unsigned int i=0; i<nStepsPrimary; i++){
48
        float phase = 2.0*pi/nStepsPrimary * i;
182 jakw 49
        float pitch = screenCols/nPeriodsPrimary;
70 jakw 50
        cv::Mat patternI(1,1,CV_8U);
51
        patternI = computePhaseVector(screenCols, phase, pitch);
52
        patterns.push_back(patternI.t());
53
    }
4 jakw 54
 
74 jakw 55
    // Secondary encoding patterns
118 jakw 56
    for(unsigned int i=0; i<nStepsSecondary; i++){
57
        float phase = 2.0*pi/nStepsSecondary * i;
182 jakw 58
        float pitch = screenCols/nPeriodsSecondary;
72 jakw 59
        cv::Mat patternI(1,1,CV_8U);
70 jakw 60
        patternI = computePhaseVector(screenCols, phase, pitch);
61
        patterns.push_back(patternI.t());
4 jakw 62
    }
128 jakw 63
    // Tertiary encoding patterns
64
    for(unsigned int i=0; i<nStepsTertiary; i++){
65
        float phase = 2.0*pi/nStepsTertiary * i;
182 jakw 66
        float pitch = screenCols/nPeriodsTertiary;
128 jakw 67
        cv::Mat patternI(1,1,CV_8U);
68
        patternI = computePhaseVector(screenCols, phase, pitch);
69
        patterns.push_back(patternI.t());
70
    }
4 jakw 71
 
72
}
73
 
128 jakw 74
cv::Mat AlgorithmPhaseShiftThreeFreq::getEncodingPattern(unsigned int depth){
4 jakw 75
    return patterns[depth];
76
}
77
 
128 jakw 78
void AlgorithmPhaseShiftThreeFreq::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
4 jakw 79
 
70 jakw 80
    const float pi = M_PI;
81
 
82
    assert(frames0.size() == N);
83
    assert(frames1.size() == N);
84
 
85
    int frameRows = frames0[0].rows;
86
    int frameCols = frames0[0].cols;
87
 
179 jakw 88
    // Rectifying homographies (rotation+projections)
89
    cv::Size frameSize(frameCols, frameRows);
90
    cv::Mat R, T;
91
    // stereoRectify segfaults unless R is double precision
92
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
93
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
94
    cv::Mat R0, R1, P0, P1, QRect;
95
    cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
96
 
97
    // Interpolation maps (lens distortion and rectification)
98
    cv::Mat map0X, map0Y, map1X, map1Y;
99
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
100
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
101
 
102
 
103
    // Gray-scale and remap
104
    std::vector<cv::Mat> frames0Rect(N);
105
    std::vector<cv::Mat> frames1Rect(N);
167 jakw 106
    for(unsigned int i=0; i<N; i++){
179 jakw 107
        cv::Mat temp;
108
        cv::cvtColor(frames0[i], temp, CV_BayerBG2GRAY);
109
        cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
110
        cv::cvtColor(frames1[i], temp, CV_BayerBG2GRAY);
111
        cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
70 jakw 112
    }
113
 
114
    // Decode camera0
179 jakw 115
    std::vector<cv::Mat> frames0Primary(frames0Rect.begin()+2, frames0Rect.begin()+2+nStepsPrimary);
116
    std::vector<cv::Mat> frames0Secondary(frames0Rect.begin()+2+nStepsPrimary, frames0Rect.end()-nStepsTertiary);
117
    std::vector<cv::Mat> frames0Tertiary(frames0Rect.end()-nStepsTertiary, frames0Rect.end());
129 jakw 118
 
76 jakw 119
    std::vector<cv::Mat> F0Primary = getDFTComponents(frames0Primary);
74 jakw 120
    cv::Mat up0Primary;
76 jakw 121
    cv::phase(F0Primary[2], -F0Primary[3], up0Primary);
122
    std::vector<cv::Mat> F0Secondary = getDFTComponents(frames0Secondary);
123
    cv::Mat up0Secondary;
124
    cv::phase(F0Secondary[2], -F0Secondary[3], up0Secondary);
128 jakw 125
    std::vector<cv::Mat> F0Tertiary = getDFTComponents(frames0Tertiary);
126
    cv::Mat up0Tertiary;
127
    cv::phase(F0Tertiary[2], -F0Tertiary[3], up0Tertiary);
128
 
182 jakw 129
    cv::Mat up0EquivalentPS = up0Primary - up0Secondary;
130
    up0EquivalentPS = cvtools::modulo(up0EquivalentPS, 2.0*pi);
131
 
187 jakw 132
    cv::Mat up0EquivalentPT = up0Primary - up0Tertiary;
133
    up0EquivalentPT = cvtools::modulo(up0EquivalentPT, 2.0*pi);
182 jakw 134
 
187 jakw 135
    cv::Mat up0Equivalent = up0EquivalentPS - up0EquivalentPT;
182 jakw 136
    up0Equivalent = cvtools::modulo(up0Equivalent, 2.0*pi);
137
 
138
    cv::Mat up0 = unwrapWithCue(up0Primary, up0Equivalent, (float)screenCols/nPeriodsPrimary);
128 jakw 139
    up0 *= screenCols/(2.0*pi);
140
    cv::Mat amplitude0;
141
    cv::magnitude(F0Primary[2], -F0Primary[3], amplitude0);
70 jakw 142
 
143
    // Decode camera1
179 jakw 144
    std::vector<cv::Mat> frames1Primary(frames1Rect.begin()+2, frames1Rect.begin()+2+nStepsPrimary);
145
    std::vector<cv::Mat> frames1Secondary(frames1Rect.begin()+2+nStepsPrimary, frames1Rect.end()-nStepsTertiary);
146
    std::vector<cv::Mat> frames1Tertiary(frames1Rect.end()-nStepsTertiary, frames1Rect.end());
129 jakw 147
 
76 jakw 148
    std::vector<cv::Mat> F1Primary = getDFTComponents(frames1Primary);
74 jakw 149
    cv::Mat up1Primary;
76 jakw 150
    cv::phase(F1Primary[2], -F1Primary[3], up1Primary);
151
    std::vector<cv::Mat> F1Secondary = getDFTComponents(frames1Secondary);
152
    cv::Mat up1Secondary;
153
    cv::phase(F1Secondary[2], -F1Secondary[3], up1Secondary);
128 jakw 154
    std::vector<cv::Mat> F1Tertiary = getDFTComponents(frames1Tertiary);
155
    cv::Mat up1Tertiary;
156
    cv::phase(F1Tertiary[2], -F1Tertiary[3], up1Tertiary);
157
 
182 jakw 158
    cv::Mat up1EquivalentPS = up1Primary - up1Secondary;
159
    up1EquivalentPS = cvtools::modulo(up1EquivalentPS, 2.0*pi);
160
 
161
    cv::Mat up1EquivalentST = up1Secondary - up1Tertiary;
162
    up1EquivalentST = cvtools::modulo(up1EquivalentST, 2.0*pi);
163
 
164
    cv::Mat up1Equivalent = up1EquivalentPS - up1EquivalentST;
165
    up1Equivalent = cvtools::modulo(up1Equivalent, 2.0*pi);
166
 
187 jakw 167
    // TODO: we should use backward phase unwrapping (Song Zhang term)...
168
 
182 jakw 169
    cv::Mat up1 = unwrapWithCue(up1Primary, up1Equivalent, (float)screenCols/nPeriodsPrimary);
128 jakw 170
    up1 *= screenCols/(2.0*pi);
171
    cv::Mat amplitude1;
172
    cv::magnitude(F1Primary[2], -F1Primary[3], amplitude1);
70 jakw 173
 
185 jakw 174
    #ifdef QT_DEBUG
182 jakw 175
        cvtools::writeMat(up0Primary, "up0Primary.mat", "up0Primary");
176
        cvtools::writeMat(up0Secondary, "up0Secondary.mat", "up0Secondary");
177
        cvtools::writeMat(up0Tertiary, "up0Tertiary.mat", "up0Tertiary");
178
        cvtools::writeMat(up0EquivalentPS, "up0EquivalentPS.mat", "up0EquivalentPS");
187 jakw 179
        cvtools::writeMat(up0EquivalentPT, "up0EquivalentPT.mat", "up0EquivalentPT");
180
        cvtools::writeMat(up0Equivalent, "up0Equivalent.mat", "up0Equivalent");
182 jakw 181
        cvtools::writeMat(up0, "up0.mat", "up0");
182
        cvtools::writeMat(up1, "up1.mat", "up1");
183
        cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
71 jakw 184
 
182 jakw 185
        cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
186
        cvtools::writeMat(amplitude1, "amplitude1.mat", "amplitude1");
187
    #endif
70 jakw 188
 
187 jakw 189
    // color debayer and remap
179 jakw 190
    cv::Mat color0, color1;
191
    cv::cvtColor(frames0[0], color0, CV_BayerBG2RGB);
187 jakw 192
    cv::remap(color0, color0, map0X, map0Y, CV_INTER_LINEAR);
193
 
179 jakw 194
    cv::cvtColor(frames1[0], color1, CV_BayerBG2RGB);
187 jakw 195
    cv::remap(color1, color1, map1X, map1Y, CV_INTER_LINEAR);
70 jakw 196
 
185 jakw 197
    #ifdef QT_DEBUG
182 jakw 198
        cvtools::writeMat(color0, "color0.mat", "color0");
199
        cvtools::writeMat(color1, "color1.mat", "color1");
200
    #endif
70 jakw 201
 
202
    // Occlusion masks
179 jakw 203
    cv::Mat occlusion0, occlusion1;
204
    cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0);
205
    occlusion0 = (occlusion0 > 5) & (occlusion0 < 250);
206
    cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1);
207
    occlusion1 = (occlusion1 > 5) & (occlusion1 < 250);
70 jakw 208
 
71 jakw 209
    // Threshold on gradient of phase
210
    cv::Mat edges0;
179 jakw 211
    cv::Sobel(up0, edges0, -1, 1, 1, 5);
212
    occlusion0 = occlusion0 & (abs(edges0) < 150);
71 jakw 213
    cv::Mat edges1;
179 jakw 214
    cv::Sobel(up1, edges1, -1, 1, 1, 5);
215
    occlusion1 = occlusion1 & (abs(edges1) < 150);
71 jakw 216
 
185 jakw 217
    #ifdef QT_DEBUG
182 jakw 218
        cvtools::writeMat(edges0, "edges0.mat", "edges0");
219
        cvtools::writeMat(edges1, "edges1.mat", "edges1");
220
    #endif
71 jakw 221
 
187 jakw 222
    #ifdef QT_DEBUG
223
        cvtools::writeMat(occlusion0, "occlusion0.mat", "occlusion0");
224
        cvtools::writeMat(occlusion1, "occlusion1.mat", "occlusion1");
225
    #endif
226
 
70 jakw 227
    // Match phase maps
228
    int frameRectRows = map0X.rows;
229
    int frameRectCols = map0X.cols;
230
 
231
    // camera0 against camera1
179 jakw 232
    std::vector<cv::Vec2f> q0, q1;
70 jakw 233
    for(int row=0; row<frameRectRows; row++){
234
        for(int col=0; col<frameRectCols; col++){
235
 
179 jakw 236
            if(!occlusion0.at<char>(row,col))
70 jakw 237
                continue;
238
 
179 jakw 239
            float up0i = up0.at<float>(row,col);
240
            for(int col1=0; col1<up1.cols-1; col1++){
70 jakw 241
 
179 jakw 242
                if(!occlusion1.at<char>(row,col1) || !occlusion1.at<char>(row,col1+1))
70 jakw 243
                    continue;
244
 
179 jakw 245
                float up1Left = up1.at<float>(row,col1);
246
                float up1Right = up1.at<float>(row,col1+1);
70 jakw 247
 
131 jakw 248
                if((up1Left <= up0i) && (up0i <= up1Right) && (up0i-up1Left < 1.0) && (up1Right-up0i < 1.0)){
70 jakw 249
 
250
                    float col1i = col1 + (up0i-up1Left)/(up1Right-up1Left);
251
 
179 jakw 252
                    q0.push_back(cv::Point2f(col, row));
253
                    q1.push_back(cv::Point2f(col1i, row));
71 jakw 254
 
255
                    break;
70 jakw 256
                }
257
            }
258
        }
259
    }
260
 
179 jakw 261
    int nMatches = q0.size();
70 jakw 262
 
263
    if(nMatches < 1){
264
        Q.resize(0);
265
        color.resize(0);
266
 
267
        return;
268
    }
269
 
270
    // Retrieve color information
271
    color.resize(nMatches);
272
    for(int i=0; i<nMatches; i++){
273
 
179 jakw 274
        cv::Vec3b c0 = color0.at<cv::Vec3b>(q0[i][1], q0[i][0]);
275
        cv::Vec3b c1 = color1.at<cv::Vec3b>(q1[i][1], q1[i][0]);
70 jakw 276
 
277
        color[i] = 0.5*c0 + 0.5*c1;
278
    }
279
 
280
    // Triangulate points
281
    cv::Mat QMatHomogenous, QMat;
179 jakw 282
    cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
70 jakw 283
    cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
284
 
285
    // Undo rectification
286
    cv::Mat R0Inv;
287
    cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
288
    QMat = R0Inv*QMat;
289
 
290
    cvtools::matToPoints3f(QMat, Q);
291
 
4 jakw 292
}