128 |
jakw |
1 |
#include "AlgorithmPhaseShiftTwoFreq.h"
|
4 |
jakw |
2 |
#include <math.h>
|
|
|
3 |
|
|
|
4 |
#include "cvtools.h"
|
|
|
5 |
|
|
|
6 |
#ifndef M_PI
|
|
|
7 |
#define M_PI 3.14159265358979323846
|
|
|
8 |
#endif
|
|
|
9 |
|
143 |
jakw |
10 |
static unsigned int nStepsPrimary = 16; // number of shifts/steps in primary
|
|
|
11 |
static unsigned int nStepsSecondary = 8; // number of shifts/steps in secondary
|
133 |
jakw |
12 |
static float periodPrimary = 48; // primary period
|
4 |
jakw |
13 |
|
41 |
jakw |
14 |
// Algorithm
|
4 |
jakw |
15 |
static cv::Mat computePhaseVector(unsigned int length, float phase, float pitch){
|
|
|
16 |
|
|
|
17 |
cv::Mat phaseVector(length, 1, CV_8UC3);
|
|
|
18 |
//phaseVector.setTo(0);
|
|
|
19 |
|
|
|
20 |
const float pi = M_PI;
|
|
|
21 |
|
|
|
22 |
// Loop through vector
|
|
|
23 |
for(int i=0; i<phaseVector.rows; i++){
|
|
|
24 |
// Amplitude of channels
|
71 |
jakw |
25 |
float amp = 0.5*(1+cos(2*pi*i/pitch - phase));
|
4 |
jakw |
26 |
phaseVector.at<cv::Vec3b>(i, 0) = cv::Vec3b(255.0*amp,255.0*amp,255.0*amp);
|
|
|
27 |
}
|
|
|
28 |
|
|
|
29 |
return phaseVector;
|
|
|
30 |
}
|
|
|
31 |
|
128 |
jakw |
32 |
AlgorithmPhaseShiftTwoFreq::AlgorithmPhaseShiftTwoFreq(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
|
4 |
jakw |
33 |
|
72 |
jakw |
34 |
// Set N
|
118 |
jakw |
35 |
N = 2+nStepsPrimary+nStepsSecondary;
|
72 |
jakw |
36 |
|
74 |
jakw |
37 |
// Determine the secondary (wider) period
|
118 |
jakw |
38 |
float pSecondary = (screenCols*periodPrimary)/(screenCols-periodPrimary);
|
74 |
jakw |
39 |
|
70 |
jakw |
40 |
// all on pattern
|
|
|
41 |
cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
|
|
|
42 |
patterns.push_back(allOn);
|
|
|
43 |
|
|
|
44 |
// all off pattern
|
|
|
45 |
cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
|
|
|
46 |
patterns.push_back(allOff);
|
|
|
47 |
|
4 |
jakw |
48 |
// Precompute encoded patterns
|
|
|
49 |
const float pi = M_PI;
|
|
|
50 |
|
74 |
jakw |
51 |
// Primary encoding patterns
|
118 |
jakw |
52 |
for(unsigned int i=0; i<nStepsPrimary; i++){
|
|
|
53 |
float phase = 2.0*pi/nStepsPrimary * i;
|
|
|
54 |
float pitch = periodPrimary;
|
70 |
jakw |
55 |
cv::Mat patternI(1,1,CV_8U);
|
|
|
56 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
|
|
57 |
patterns.push_back(patternI.t());
|
|
|
58 |
}
|
4 |
jakw |
59 |
|
74 |
jakw |
60 |
// Secondary encoding patterns
|
118 |
jakw |
61 |
for(unsigned int i=0; i<nStepsSecondary; i++){
|
|
|
62 |
float phase = 2.0*pi/nStepsSecondary * i;
|
74 |
jakw |
63 |
float pitch = pSecondary;
|
72 |
jakw |
64 |
cv::Mat patternI(1,1,CV_8U);
|
70 |
jakw |
65 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
|
|
66 |
patterns.push_back(patternI.t());
|
4 |
jakw |
67 |
}
|
|
|
68 |
|
72 |
jakw |
69 |
|
4 |
jakw |
70 |
}
|
|
|
71 |
|
128 |
jakw |
72 |
cv::Mat AlgorithmPhaseShiftTwoFreq::getEncodingPattern(unsigned int depth){
|
4 |
jakw |
73 |
return patterns[depth];
|
|
|
74 |
}
|
|
|
75 |
|
|
|
76 |
|
167 |
jakw |
77 |
//// Absolute phase from 3 frames
|
|
|
78 |
//static cv::Mat getPhase(const cv::Mat I1, const cv::Mat I2, const cv::Mat I3){
|
4 |
jakw |
79 |
|
167 |
jakw |
80 |
// cv::Mat_<float> I1_(I1);
|
|
|
81 |
// cv::Mat_<float> I2_(I2);
|
|
|
82 |
// cv::Mat_<float> I3_(I3);
|
70 |
jakw |
83 |
|
167 |
jakw |
84 |
// cv::Mat phase;
|
70 |
jakw |
85 |
|
167 |
jakw |
86 |
// // One call approach
|
|
|
87 |
// cv::phase(2.0*I1_-I3_-I2_, sqrt(3.0)*(I2_-I3_), phase);
|
|
|
88 |
// return phase;
|
70 |
jakw |
89 |
|
167 |
jakw |
90 |
//}
|
70 |
jakw |
91 |
|
|
|
92 |
// Phase unwrapping by means of a phase cue
|
128 |
jakw |
93 |
static cv::Mat unwrapWithCue(const cv::Mat up, const cv::Mat upCue, float nPhases){
|
70 |
jakw |
94 |
|
4 |
jakw |
95 |
const float pi = M_PI;
|
|
|
96 |
|
70 |
jakw |
97 |
// Determine number of jumps
|
128 |
jakw |
98 |
cv::Mat P = (upCue*nPhases-up)/(2.0*pi);
|
4 |
jakw |
99 |
|
70 |
jakw |
100 |
// Round to integers
|
|
|
101 |
P.convertTo(P, CV_8U);
|
|
|
102 |
P.convertTo(P, CV_32F);
|
4 |
jakw |
103 |
|
70 |
jakw |
104 |
// Add to phase
|
|
|
105 |
cv::Mat upUnwrapped = up + P*2*pi;
|
4 |
jakw |
106 |
|
70 |
jakw |
107 |
// Scale to range [0; 2pi]
|
|
|
108 |
upUnwrapped *= 1.0/nPhases;
|
|
|
109 |
|
|
|
110 |
return upUnwrapped;
|
4 |
jakw |
111 |
}
|
|
|
112 |
|
70 |
jakw |
113 |
// Absolute phase and magnitude from N frames
|
128 |
jakw |
114 |
static std::vector<cv::Mat> getDFTComponents(const std::vector<cv::Mat> frames){
|
70 |
jakw |
115 |
|
|
|
116 |
unsigned int N = frames.size();
|
|
|
117 |
|
71 |
jakw |
118 |
// std::vector<cv::Mat> framesReverse = frames;
|
|
|
119 |
// std::reverse(framesReverse.begin(), framesReverse.end());
|
70 |
jakw |
120 |
|
|
|
121 |
// DFT approach
|
|
|
122 |
cv::Mat I;
|
|
|
123 |
cv::merge(frames, I);
|
|
|
124 |
unsigned int w = I.cols;
|
|
|
125 |
unsigned int h = I.rows;
|
|
|
126 |
I = I.reshape(1, h*w);
|
|
|
127 |
I.convertTo(I, CV_32F);
|
|
|
128 |
cv::Mat fI;
|
|
|
129 |
cv::dft(I, fI, cv::DFT_ROWS + cv::DFT_COMPLEX_OUTPUT);
|
|
|
130 |
fI = fI.reshape(N*2, h);
|
|
|
131 |
|
|
|
132 |
std::vector<cv::Mat> fIcomp;
|
|
|
133 |
cv::split(fI, fIcomp);
|
|
|
134 |
|
|
|
135 |
return fIcomp;
|
|
|
136 |
|
|
|
137 |
}
|
|
|
138 |
|
128 |
jakw |
139 |
void AlgorithmPhaseShiftTwoFreq::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
|
4 |
jakw |
140 |
|
70 |
jakw |
141 |
const float pi = M_PI;
|
|
|
142 |
|
|
|
143 |
assert(frames0.size() == N);
|
|
|
144 |
assert(frames1.size() == N);
|
|
|
145 |
|
|
|
146 |
int frameRows = frames0[0].rows;
|
|
|
147 |
int frameCols = frames0[0].cols;
|
|
|
148 |
|
178 |
jakw |
149 |
// Rectifying homographies (rotation+projections)
|
|
|
150 |
cv::Size frameSize(frameCols, frameRows);
|
|
|
151 |
cv::Mat R, T;
|
|
|
152 |
// stereoRectify segfaults unless R is double precision
|
|
|
153 |
cv::Mat(calibration.R1).convertTo(R, CV_64F);
|
|
|
154 |
cv::Mat(calibration.T1).convertTo(T, CV_64F);
|
|
|
155 |
cv::Mat R0, R1, P0, P1, QRect;
|
|
|
156 |
cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
|
|
|
157 |
|
|
|
158 |
// Interpolation maps (lens distortion and rectification)
|
|
|
159 |
cv::Mat map0X, map0Y, map1X, map1Y;
|
|
|
160 |
cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
|
|
|
161 |
cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
|
|
|
162 |
|
|
|
163 |
// gray-scale and remap
|
|
|
164 |
std::vector<cv::Mat> frames0Rect(N);
|
|
|
165 |
std::vector<cv::Mat> frames1Rect(N);
|
167 |
jakw |
166 |
for(unsigned int i=0; i<N; i++){
|
178 |
jakw |
167 |
cv::Mat temp;
|
|
|
168 |
cv::cvtColor(frames0[i], temp, CV_BayerBG2GRAY);
|
|
|
169 |
cv::remap(temp, frames0Rect[i], map0X, map0Y, CV_INTER_LINEAR);
|
|
|
170 |
cv::cvtColor(frames1[i], temp, CV_BayerBG2GRAY);
|
|
|
171 |
cv::remap(temp, frames1Rect[i], map1X, map1Y, CV_INTER_LINEAR);
|
70 |
jakw |
172 |
}
|
|
|
173 |
|
|
|
174 |
// Decode camera0
|
178 |
jakw |
175 |
std::vector<cv::Mat> frames0Primary(frames0Rect.begin()+2, frames0Rect.begin()+2+nStepsPrimary);
|
|
|
176 |
std::vector<cv::Mat> frames0Secondary(frames0Rect.begin()+2+nStepsPrimary, frames0Rect.end());
|
76 |
jakw |
177 |
std::vector<cv::Mat> F0Primary = getDFTComponents(frames0Primary);
|
74 |
jakw |
178 |
cv::Mat up0Primary;
|
76 |
jakw |
179 |
cv::phase(F0Primary[2], -F0Primary[3], up0Primary);
|
|
|
180 |
//cv::Mat up0Secondary = getPhase(frames0Secondary[0], frames0Secondary[1], frames0Secondary[2]);
|
|
|
181 |
std::vector<cv::Mat> F0Secondary = getDFTComponents(frames0Secondary);
|
|
|
182 |
cv::Mat up0Secondary;
|
|
|
183 |
cv::phase(F0Secondary[2], -F0Secondary[3], up0Secondary);
|
74 |
jakw |
184 |
cv::Mat up0Equivalent = up0Primary - up0Secondary;
|
128 |
jakw |
185 |
up0Equivalent = cvtools::modulo(up0Equivalent, 2.0*pi);
|
118 |
jakw |
186 |
cv::Mat up0 = unwrapWithCue(up0Primary, up0Equivalent, (float)screenCols/periodPrimary);
|
128 |
jakw |
187 |
up0 *= screenCols/(2.0*pi);
|
|
|
188 |
cv::Mat amplitude0;
|
|
|
189 |
cv::magnitude(F0Primary[2], -F0Primary[3], amplitude0);
|
70 |
jakw |
190 |
|
|
|
191 |
// Decode camera1
|
178 |
jakw |
192 |
std::vector<cv::Mat> frames1Primary(frames1Rect.begin()+2, frames1Rect.begin()+2+nStepsPrimary);
|
|
|
193 |
std::vector<cv::Mat> frames1Secondary(frames1Rect.begin()+2+nStepsPrimary, frames1Rect.end());
|
76 |
jakw |
194 |
std::vector<cv::Mat> F1Primary = getDFTComponents(frames1Primary);
|
74 |
jakw |
195 |
cv::Mat up1Primary;
|
76 |
jakw |
196 |
cv::phase(F1Primary[2], -F1Primary[3], up1Primary);
|
|
|
197 |
//cv::Mat up1Secondary = getPhase(frames1Secondary[0], frames1Secondary[1], frames1Secondary[2]);
|
|
|
198 |
std::vector<cv::Mat> F1Secondary = getDFTComponents(frames1Secondary);
|
|
|
199 |
cv::Mat up1Secondary;
|
|
|
200 |
cv::phase(F1Secondary[2], -F1Secondary[3], up1Secondary);
|
74 |
jakw |
201 |
cv::Mat up1Equivalent = up1Primary - up1Secondary;
|
128 |
jakw |
202 |
up1Equivalent = cvtools::modulo(up1Equivalent, 2.0*pi);
|
118 |
jakw |
203 |
cv::Mat up1 = unwrapWithCue(up1Primary, up1Equivalent, (float)screenCols/periodPrimary);
|
128 |
jakw |
204 |
up1 *= screenCols/(2.0*pi);
|
|
|
205 |
cv::Mat amplitude1;
|
|
|
206 |
cv::magnitude(F1Primary[2], -F1Primary[3], amplitude1);
|
70 |
jakw |
207 |
|
148 |
jakw |
208 |
//cvtools::writeMat(up0Primary, "up0Primary.mat", "up0Primary");
|
|
|
209 |
//cvtools::writeMat(up0Secondary, "up0Secondary.mat", "up0Secondary");
|
|
|
210 |
//cvtools::writeMat(up0Equivalent, "up0Equivalent.mat", "up0Equivalent");
|
|
|
211 |
//cvtools::writeMat(up0, "up0.mat", "up0");
|
|
|
212 |
//cvtools::writeMat(amplitude0, "amplitude0.mat", "amplitude0");
|
71 |
jakw |
213 |
|
118 |
jakw |
214 |
// color debayer and remap
|
178 |
jakw |
215 |
cv::Mat color0, color1;
|
121 |
jakw |
216 |
// frames0[0].convertTo(color0Rect, CV_8UC1, 1.0/256.0);
|
178 |
jakw |
217 |
cv::cvtColor(frames0[0], color0, CV_BayerBG2RGB);
|
|
|
218 |
cv::remap(color0, color0, map0X, map0Y, CV_INTER_LINEAR);
|
70 |
jakw |
219 |
|
121 |
jakw |
220 |
// frames1[0].convertTo(color1Rect, CV_8UC1, 1.0/256.0);
|
178 |
jakw |
221 |
cv::cvtColor(frames1[0], color1, CV_BayerBG2RGB);
|
|
|
222 |
cv::remap(color1, color1, map1X, map1Y, CV_INTER_LINEAR);
|
118 |
jakw |
223 |
|
178 |
jakw |
224 |
//cvtools::writeMat(color0, "color0.mat", "color0");
|
|
|
225 |
//cvtools::writeMat(color1, "color1.mat", "color1");
|
118 |
jakw |
226 |
|
70 |
jakw |
227 |
// Occlusion masks
|
178 |
jakw |
228 |
cv::Mat occlusion0, occlusion1;
|
|
|
229 |
cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0);
|
|
|
230 |
occlusion0 = (occlusion0 > 25) & (occlusion0 < 250);
|
|
|
231 |
cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1);
|
|
|
232 |
occlusion1 = (occlusion1 > 25) & (occlusion1 < 250);
|
70 |
jakw |
233 |
|
128 |
jakw |
234 |
// Threshold on energy at primary frequency
|
178 |
jakw |
235 |
occlusion0 = occlusion0 & (amplitude0 > 5.0*nStepsPrimary);
|
|
|
236 |
occlusion1 = occlusion1 & (amplitude1 > 5.0*nStepsPrimary);
|
128 |
jakw |
237 |
|
178 |
jakw |
238 |
//cvtools::writeMat(occlusion1, "occlusion1.mat", "occlusion1");
|
|
|
239 |
//cvtools::writeMat(occlusion1, "occlusion1.mat", "occlusion1");
|
74 |
jakw |
240 |
|
70 |
jakw |
241 |
// Erode occlusion masks
|
74 |
jakw |
242 |
cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
|
178 |
jakw |
243 |
cv::erode(occlusion0, occlusion0, strel);
|
|
|
244 |
cv::erode(occlusion1, occlusion1, strel);
|
70 |
jakw |
245 |
|
71 |
jakw |
246 |
// Threshold on gradient of phase
|
|
|
247 |
cv::Mat edges0;
|
178 |
jakw |
248 |
cv::Sobel(up0, edges0, -1, 1, 1, 5);
|
|
|
249 |
occlusion0 = occlusion0 & (abs(edges0) < 150);
|
71 |
jakw |
250 |
|
|
|
251 |
cv::Mat edges1;
|
178 |
jakw |
252 |
cv::Sobel(up1, edges1, -1, 1, 1, 5);
|
|
|
253 |
occlusion1 = occlusion1 & (abs(edges1) < 150);
|
71 |
jakw |
254 |
|
74 |
jakw |
255 |
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
|
|
|
256 |
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
|
71 |
jakw |
257 |
|
70 |
jakw |
258 |
// Match phase maps
|
|
|
259 |
int frameRectRows = map0X.rows;
|
|
|
260 |
int frameRectCols = map0X.cols;
|
|
|
261 |
|
|
|
262 |
// camera0 against camera1
|
178 |
jakw |
263 |
std::vector<cv::Vec2f> q0, q1;
|
70 |
jakw |
264 |
for(int row=0; row<frameRectRows; row++){
|
|
|
265 |
for(int col=0; col<frameRectCols; col++){
|
|
|
266 |
|
178 |
jakw |
267 |
if(!occlusion0.at<char>(row,col))
|
70 |
jakw |
268 |
continue;
|
|
|
269 |
|
178 |
jakw |
270 |
float up0i = up0.at<float>(row,col);
|
|
|
271 |
for(int col1=0; col1<up1.cols-1; col1++){
|
70 |
jakw |
272 |
|
178 |
jakw |
273 |
if(!occlusion1.at<char>(row,col1) || !occlusion1.at<char>(row,col1+1))
|
70 |
jakw |
274 |
continue;
|
|
|
275 |
|
178 |
jakw |
276 |
float up1Left = up1.at<float>(row,col1);
|
|
|
277 |
float up1Right = up1.at<float>(row,col1+1);
|
70 |
jakw |
278 |
|
74 |
jakw |
279 |
if((up1Left <= up0i) && (up0i <= up1Right) && (up0i-up1Left < 1) && (up1Right-up0i < 1)){
|
70 |
jakw |
280 |
|
|
|
281 |
float col1i = col1 + (up0i-up1Left)/(up1Right-up1Left);
|
|
|
282 |
|
178 |
jakw |
283 |
q0.push_back(cv::Point2f(col, row));
|
|
|
284 |
q1.push_back(cv::Point2f(col1i, row));
|
71 |
jakw |
285 |
|
|
|
286 |
break;
|
70 |
jakw |
287 |
}
|
|
|
288 |
}
|
|
|
289 |
}
|
|
|
290 |
}
|
|
|
291 |
|
|
|
292 |
|
178 |
jakw |
293 |
int nMatches = q0.size();
|
74 |
jakw |
294 |
|
70 |
jakw |
295 |
if(nMatches < 1){
|
|
|
296 |
Q.resize(0);
|
|
|
297 |
color.resize(0);
|
|
|
298 |
|
|
|
299 |
return;
|
|
|
300 |
}
|
|
|
301 |
|
|
|
302 |
// Retrieve color information
|
|
|
303 |
color.resize(nMatches);
|
|
|
304 |
for(int i=0; i<nMatches; i++){
|
|
|
305 |
|
178 |
jakw |
306 |
cv::Vec3b c0 = color0.at<cv::Vec3b>(q0[i][1], q0[i][0]);
|
|
|
307 |
cv::Vec3b c1 = color1.at<cv::Vec3b>(q1[i][1], q1[i][0]);
|
70 |
jakw |
308 |
|
|
|
309 |
color[i] = 0.5*c0 + 0.5*c1;
|
|
|
310 |
}
|
|
|
311 |
|
|
|
312 |
// Triangulate points
|
|
|
313 |
cv::Mat QMatHomogenous, QMat;
|
178 |
jakw |
314 |
cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
|
70 |
jakw |
315 |
cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
|
|
|
316 |
|
|
|
317 |
// Undo rectification
|
|
|
318 |
cv::Mat R0Inv;
|
|
|
319 |
cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
|
|
|
320 |
QMat = R0Inv*QMat;
|
|
|
321 |
|
|
|
322 |
cvtools::matToPoints3f(QMat, Q);
|
|
|
323 |
|
4 |
jakw |
324 |
}
|