Subversion Repositories seema-scanner

Rev

Rev 233 | Rev 235 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
181 jakw 1
//
2
// Two Frequency Phase Shifting using the Heterodyne Principle
3
//
234 sorgre 4
// This implementation follows "Reich, Ritter, Thesing, White light heterodyne
5
// principle for 3D-measurement", SPIE (1997).
6
//
181 jakw 7
// Different from the paper, it uses only two different frequencies.
8
//
234 sorgre 9
// The number of periods in the primary frequency can be chosen freely, but
10
// small changes can have a considerable impact on quality. The number of
11
// phase shifts can be chosen freely (min. 3), and higher values reduce the
12
// effects of image noise.They also allow us to filter bad points based on
13
// energy at non-primary frequencies.
181 jakw 14
//
15
 
128 jakw 16
#include "AlgorithmPhaseShiftTwoFreq.h"
4 jakw 17
#include <math.h>
18
 
19
#include "cvtools.h"
182 jakw 20
#include "algorithmtools.h"
4 jakw 21
 
231 jakw 22
#include <omp.h>
23
 
143 jakw 24
static unsigned int nStepsPrimary = 16; // number of shifts/steps in primary
25
static unsigned int nStepsSecondary = 8; // number of shifts/steps in secondary
190 jakw 26
static float nPeriodsPrimary = 40; // primary period
4 jakw 27
 
234 sorgre 28
AlgorithmPhaseShiftTwoFreq::AlgorithmPhaseShiftTwoFreq(unsigned int _screenCols,
29
                                                       unsigned int _screenRows)
30
    : Algorithm(_screenCols, _screenRows) {
4 jakw 31
 
72 jakw 32
    // Set N
118 jakw 33
    N = 2+nStepsPrimary+nStepsSecondary;
72 jakw 34
 
190 jakw 35
    // Determine the secondary (wider) period to fulfill the heterodyne condition
36
    float nPeriodsSecondary = nPeriodsPrimary + 1;
74 jakw 37
 
70 jakw 38
    // all on pattern
39
    cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
40
    patterns.push_back(allOn);
41
 
42
    // all off pattern
43
    cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
44
    patterns.push_back(allOff);
45
 
74 jakw 46
    // Primary encoding patterns
118 jakw 47
    for(unsigned int i=0; i<nStepsPrimary; i++){
192 jakw 48
        float phase = 2.0*CV_PI/nStepsPrimary * i;
190 jakw 49
        float pitch = screenCols/nPeriodsPrimary;
70 jakw 50
        cv::Mat patternI(1,1,CV_8U);
51
        patternI = computePhaseVector(screenCols, phase, pitch);
52
        patterns.push_back(patternI.t());
53
    }
4 jakw 54
 
74 jakw 55
    // Secondary encoding patterns
118 jakw 56
    for(unsigned int i=0; i<nStepsSecondary; i++){
192 jakw 57
        float phase = 2.0*CV_PI/nStepsSecondary * i;
190 jakw 58
        float pitch = screenCols/nPeriodsSecondary;
72 jakw 59
        cv::Mat patternI(1,1,CV_8U);
70 jakw 60
        patternI = computePhaseVector(screenCols, phase, pitch);
61
        patterns.push_back(patternI.t());
4 jakw 62
    }
63
 
72 jakw 64
 
4 jakw 65
}
66
 
128 jakw 67
cv::Mat AlgorithmPhaseShiftTwoFreq::getEncodingPattern(unsigned int depth){
4 jakw 68
    return patterns[depth];
69
}
70
 
233 - 71
 
72
struct StereoRectifyier {
73
    cv::Mat map0X, map0Y, map1X, map1Y;
74
    cv::Mat R0, R1, P0, P1, QRect;
75
};
76
static void getStereoRectifyier(const SMCalibrationParameters &calibration,
77
                                const cv::Size& frameSize,
78
                                StereoRectifyier& stereoRect);
79
static void determineAmplitudePhaseEnergy(std::vector<cv::Mat>& frames,
234 sorgre 80
                                    cv::Mat& amplitude,
81
                                    cv::Mat& phase,
82
                                    cv::Mat& energy);
83
static void collectPhases(const cv::Mat& phasePrimary,
84
                          const cv::Mat& phaseSecondary,
233 - 85
                          cv::Mat& phase);
86
static void matchPhaseMaps(const cv::Mat& occlusion0, const cv::Mat& occlusion1,
87
                           const cv::Mat& phase0, const cv::Mat& phase1,
88
                           std::vector<cv::Vec2f>& q0, std::vector<cv::Vec2f>& q1);
89
static void triangulate(const StereoRectifyier& stereoRect,
90
                        const std::vector<cv::Vec2f>& q0,
91
                        const std::vector<cv::Vec2f>& q1,
92
                        std::vector<cv::Point3f>& Q);
93
 
94
 
234 sorgre 95
void AlgorithmPhaseShiftTwoFreq::
96
    get3DPoints(const SMCalibrationParameters & calibration,
97
                const std::vector<cv::Mat>& frames0,
98
                const std::vector<cv::Mat>& frames1,
99
                std::vector<cv::Point3f>& Q,
100
                std::vector<cv::Vec3b>& color){
4 jakw 101
 
70 jakw 102
    assert(frames0.size() == N);
103
    assert(frames1.size() == N);
104
 
233 - 105
    StereoRectifyier stereoRect;
234 sorgre 106
    getStereoRectifyier(calibration,
107
                        cv::Size(frames0[0].cols, frames0[0].rows),
108
                        stereoRect);
231 jakw 109
 
233 - 110
    // // Erode occlusion masks
111
    // cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
112
 
113
    cv::Mat up0, up1;
114
    cv::Mat occlusion0, occlusion1;
115
    cv::Mat color0, color1;
116
 
117
    #pragma omp parallel sections
231 jakw 118
    {
233 - 119
        #pragma omp section
120
        {
70 jakw 121
 
233 - 122
            // Gray-scale and remap/rectify
123
            std::vector<cv::Mat> frames0Rect(N);
178 jakw 124
 
233 - 125
            for(unsigned int i=0; i<N; i++){
126
                cv::Mat temp;
127
                cv::cvtColor(frames0[i], temp, CV_BayerBG2GRAY);
234 sorgre 128
                cv::remap(temp, frames0Rect[i],
129
                          stereoRect.map0X, stereoRect.map0Y,
130
                          CV_INTER_LINEAR);
233 - 131
            }
207 flgw 132
 
234 sorgre 133
            cv::cvtColor(frames0[0], color0, CV_BayerBG2RGB);
134
            cv::remap(color0, color0,
135
                      stereoRect.map1X, stereoRect.map1Y,
136
                      CV_INTER_LINEAR);
137
 
233 - 138
            // Occlusion masks
139
            cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0);
140
            occlusion0 = (occlusion0 > 25) & (occlusion0 < 250);
182 jakw 141
 
233 - 142
            // Decode camera0
234 sorgre 143
            std::vector<cv::Mat> frames0Primary(frames0Rect.begin()+2,
144
                                                frames0Rect.begin()+2+nStepsPrimary);
145
            std::vector<cv::Mat> frames0Secondary(frames0Rect.begin()+2+nStepsPrimary,
146
                                                  frames0Rect.end());
70 jakw 147
 
233 - 148
            frames0Rect.clear();
182 jakw 149
 
233 - 150
            cv::Mat amplitude0Primary, amplitude0Secondary;
151
            cv::Mat up0Primary, up0Secondary;
152
            cv::Mat energy0Primary, energy0Secondary;
153
            determineAmplitudePhaseEnergy(frames0Primary,
234 sorgre 154
                                          amplitude0Primary,
155
                                          up0Primary,
156
                                          energy0Primary);
233 - 157
            determineAmplitudePhaseEnergy(frames0Secondary,
234 sorgre 158
                                          amplitude0Secondary,
159
                                          up0Secondary,
160
                                          energy0Secondary);
207 flgw 161
 
233 - 162
            collectPhases(up0Primary, up0Secondary, up0);
231 jakw 163
 
233 - 164
            // Threshold on energy at primary frequency
165
            occlusion0 = occlusion0 & (amplitude0Primary > 5.0*nStepsPrimary);
166
            // Threshold on energy ratios
167
            occlusion0 = occlusion0 & (amplitude0Primary > 0.25*energy0Primary);
168
            occlusion0 = occlusion0 & (amplitude0Secondary > 0.25*energy0Secondary);
231 jakw 169
 
233 - 170
            // // Erode occlusion masks
171
            // cv::erode(occlusion0, occlusion0, strel);
231 jakw 172
 
233 - 173
            // Threshold on gradient of phase
174
            cv::Mat edges0;
175
            cv::Sobel(up0, edges0, -1, 1, 1, 5);
176
            occlusion0 = occlusion0 & (abs(edges0) < 10);
182 jakw 177
 
233 - 178
            #ifdef SM_DEBUG
179
                cvtools::writeMat(up0Primary, "up0Primary.mat", "up0Primary");
180
                cvtools::writeMat(up0Secondary, "up0Secondary.mat", "up0Secondary");
181
                cvtools::writeMat(up0, "up0.mat", "up0");
234 sorgre 182
                cvtools::writeMat(amplitude0Primary,
183
                                  "amplitude0Primary.mat", "amplitude0Primary");
184
                cvtools::writeMat(amplitude0Secondary,
185
                                  "amplitude0Secondary.mat", "amplitude0Secondary");
186
                cvtools::writeMat(energy0Primary,
187
                                  "energy0Primary.mat", "energy0Primary");
188
                cvtools::writeMat(energy0Secondary,
189
                                  "energy0Secondary.mat", "energy0Secondary");
233 - 190
                cvtools::writeMat(edges0, "edges0.mat", "edges0");
191
                cvtools::writeMat(occlusion0, "occlusion0.mat", "occlusion0");
234 sorgre 192
                cvtools::writeMat(color0, "color0.mat", "color0");
233 - 193
            #endif
182 jakw 194
 
233 - 195
        }
196
        #pragma omp section
197
        {
70 jakw 198
 
233 - 199
            // Gray-scale and remap
200
            std::vector<cv::Mat> frames1Rect(N);
200 jakw 201
 
233 - 202
            for(unsigned int i=0; i<N; i++){
203
                cv::Mat temp;
204
                cv::cvtColor(frames1[i], temp, CV_BayerBG2GRAY);
234 sorgre 205
                cv::remap(temp, frames1Rect[i],
206
                          stereoRect.map1X, stereoRect.map1Y,
207
                          CV_INTER_LINEAR);
233 - 208
            }
182 jakw 209
 
234 sorgre 210
            cv::cvtColor(frames1[0], color1, CV_BayerBG2RGB);
211
            cv::remap(color1, color1,
212
                      stereoRect.map1X, stereoRect.map1Y,
213
                      CV_INTER_LINEAR);
214
 
233 - 215
            // Occlusion masks
216
            cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1);
217
            occlusion1 = (occlusion1 > 25) & (occlusion1 < 250);
218
 
219
            // Decode camera1
234 sorgre 220
            std::vector<cv::Mat> frames1Primary(frames1Rect.begin()+2,
221
                                                frames1Rect.begin()+2+nStepsPrimary);
222
            std::vector<cv::Mat> frames1Secondary(frames1Rect.begin()+2+nStepsPrimary,
223
                                                  frames1Rect.end());
233 - 224
 
225
            frames1Rect.clear();
226
 
227
            cv::Mat amplitude1Primary, amplitude1Secondary;
228
            cv::Mat up1Primary, up1Secondary;
229
            cv::Mat energy1Primary, energy1Secondary;
230
            determineAmplitudePhaseEnergy(frames1Primary,
234 sorgre 231
                                          amplitude1Primary,
232
                                          up1Primary,
233
                                          energy1Primary);
233 - 234
            determineAmplitudePhaseEnergy(frames1Secondary,
234 sorgre 235
                                          amplitude1Secondary,
236
                                          up1Secondary,
237
                                          energy1Secondary);
233 - 238
 
239
            collectPhases(up1Primary, up1Secondary, up1);
240
 
241
            // Threshold on energy at primary frequency
242
            occlusion1 = occlusion1 & (amplitude1Primary > 5.0*nStepsPrimary);
243
            // Threshold on energy ratios
244
            occlusion1 = occlusion1 & (amplitude1Primary > 0.25*energy1Primary);
245
            occlusion1 = occlusion1 & (amplitude1Secondary > 0.25*energy1Secondary);
246
 
247
            // // Erode occlusion masks
248
            // cv::erode(occlusion1, occlusion1, strel);
249
 
250
 
251
            // Threshold on gradient of phase
252
            cv::Mat edges1;
253
            cv::Sobel(up1, edges1, -1, 1, 1, 5);
254
            occlusion1 = occlusion1 & (abs(edges1) < 10);
255
 
256
            #ifdef SM_DEBUG
257
                cvtools::writeMat(up1Primary, "up1Primary.mat", "up1Primary");
258
                cvtools::writeMat(up1Secondary, "up1Secondary.mat", "up1Secondary");
259
                cvtools::writeMat(up1, "up1.mat", "up1");
234 sorgre 260
                cvtools::writeMat(amplitude1Primary,
261
                                  "amplitude1Primary.mat", "amplitude1Primary");
262
                cvtools::writeMat(amplitude1Secondary,
263
                                  "amplitude1Secondary.mat", "amplitude1Secondary");
264
                cvtools::writeMat(energy1Primary,
265
                                  "energy1Primary.mat", "energy1Primary");
266
                cvtools::writeMat(energy1Secondary,
267
                                  "energy1Secondary.mat", "energy1Secondary");
233 - 268
                cvtools::writeMat(edges1, "edges1.mat", "edges1");
269
                cvtools::writeMat(occlusion1, "occlusion1.mat", "occlusion1");
234 sorgre 270
                cvtools::writeMat(color1, "color1.mat", "color1");
233 - 271
            #endif
272
 
273
        }
182 jakw 274
    }
275
 
207 flgw 276
 
233 - 277
    // Match phase maps
185 jakw 278
 
233 - 279
    // camera0 against camera1
280
    std::vector<cv::Vec2f> q0, q1;
281
    matchPhaseMaps(occlusion0, occlusion1, up0, up1, q0, q1);
231 jakw 282
 
233 - 283
    size_t nMatches = q0.size();
284
 
285
    if(nMatches < 1){
286
        Q.resize(0);
287
        color.resize(0);
288
 
289
        return;
231 jakw 290
    }
234 sorgre 291
    else {
233 - 292
        // Retrieve color information
293
        color.resize(nMatches);
294
        for(unsigned int i=0; i<nMatches; i++){
295
 
296
            cv::Vec3b c0 = color0.at<cv::Vec3b>(int(q0[i][1]), int(q0[i][0]));
297
            cv::Vec3b c1 = color1.at<cv::Vec3b>(int(q1[i][1]), int(q1[i][0]));
298
 
299
            color[i] = 0.5*c0 + 0.5*c1;
300
        }
231 jakw 301
    }
207 flgw 302
 
233 - 303
    // Triangulate points
304
    triangulate(stereoRect, q0, q1, Q);
207 flgw 305
 
233 - 306
}
207 flgw 307
 
234 sorgre 308
void getStereoRectifyier(const SMCalibrationParameters &calibration,
309
                         const cv::Size& frameSize,
310
                         StereoRectifyier& stereoRect){
231 jakw 311
 
233 - 312
    // cv::stereoRectify segfaults unless R is double precision
313
    cv::Mat R, T;
314
    cv::Mat(calibration.R1).convertTo(R, CV_64F);
315
    cv::Mat(calibration.T1).convertTo(T, CV_64F);
182 jakw 316
 
233 - 317
    cv::stereoRectify(calibration.K0, calibration.k0,
318
                      calibration.K1, calibration.k1,
319
                      frameSize, R, T,
320
                      stereoRect.R0, stereoRect.R1,
321
                      stereoRect.P0, stereoRect.P1,
322
                      stereoRect.QRect, 0);
182 jakw 323
 
233 - 324
    // Interpolation maps (lens distortion and rectification)
325
    cv::initUndistortRectifyMap(calibration.K0, calibration.k0,
326
                                stereoRect.R0, stereoRect.P0,
327
                                frameSize, CV_32F,
328
                                stereoRect.map0X, stereoRect.map0Y);
329
    cv::initUndistortRectifyMap(calibration.K1, calibration.k1,
330
                                stereoRect.R1, stereoRect.P1,
331
                                frameSize, CV_32F,
332
                                stereoRect.map1X, stereoRect.map1Y);
333
}
70 jakw 334
 
233 - 335
void determineAmplitudePhaseEnergy(std::vector<cv::Mat>& frames,
234 sorgre 336
                                   cv::Mat& amplitude,
337
                                   cv::Mat& phase,
338
                                   cv::Mat& energy) {
233 - 339
 
340
    std::vector<cv::Mat> fourier = getDFTComponents(frames);
341
 
342
    cv::phase(fourier[2], -fourier[3], phase);
343
 
200 jakw 344
    // Signal energy at unit frequency
233 - 345
    cv::magnitude(fourier[2], -fourier[3], amplitude);
200 jakw 346
 
182 jakw 347
    // Collected signal energy at higher frequencies
233 - 348
    energy = cv::Mat(phase.rows, phase.cols, CV_32F, cv::Scalar(0.0));
182 jakw 349
 
233 - 350
    for(unsigned int i=0; i<frames.size()-1; i++){
182 jakw 351
        cv::Mat magnitude;
233 - 352
        cv::magnitude(fourier[i*2 + 2], fourier[i*2 + 3], magnitude);
353
        cv::add(energy, magnitude, energy, cv::noArray(), CV_32F);
182 jakw 354
    }
355
 
233 - 356
    frames.clear();
357
}
70 jakw 358
 
234 sorgre 359
void collectPhases(const cv::Mat& phasePrimary,
360
                   const cv::Mat& phaseSecondary,
233 - 361
                   cv::Mat& phase) {
362
    cv::Mat phaseEquivalent = phaseSecondary - phasePrimary;
363
    phaseEquivalent = cvtools::modulo(phaseEquivalent, 2.0*CV_PI);
364
    phase = unwrapWithCue(phasePrimary, phaseEquivalent, nPeriodsPrimary);
365
    phase *= phasePrimary.cols/(2.0*CV_PI);
366
}
207 flgw 367
 
231 jakw 368
 
233 - 369
void matchPhaseMaps(const cv::Mat& occlusion0, const cv::Mat& occlusion1,
370
                    const cv::Mat& phase0, const cv::Mat& phase1,
371
                    std::vector<cv::Vec2f>& q0, std::vector<cv::Vec2f>& q1) {
231 jakw 372
 
373
    #pragma omp parallel for
233 - 374
    for(int row=0; row<occlusion0.rows; row++){
375
        for(int col=0; col<occlusion0.cols; col++){
70 jakw 376
 
178 jakw 377
            if(!occlusion0.at<char>(row,col))
70 jakw 378
                continue;
379
 
233 - 380
            float phase0i = phase0.at<float>(row,col);
381
            for(int col1=0; col1<phase1.cols-1; col1++){
70 jakw 382
 
178 jakw 383
                if(!occlusion1.at<char>(row,col1) || !occlusion1.at<char>(row,col1+1))
70 jakw 384
                    continue;
385
 
233 - 386
                float phase1Left = phase1.at<float>(row,col1);
387
                float phase1Right = phase1.at<float>(row,col1+1);
70 jakw 388
 
233 - 389
                bool match = (phase1Left <= phase0i)
390
                              && (phase0i <= phase1Right)
391
                              && (phase0i-phase1Left < 1.0)
392
                              && (phase1Right-phase0i < 1.0)
393
                              && (phase1Right-phase1Left > 0.1);
70 jakw 394
 
233 - 395
                if(match){
70 jakw 396
 
233 - 397
                    float col1i = col1 + (phase0i-phase1Left)/(phase1Right-phase1Left);
398
 
231 jakw 399
                    #pragma omp critical
400
                    {
178 jakw 401
                    q0.push_back(cv::Point2f(col, row));
402
                    q1.push_back(cv::Point2f(col1i, row));
231 jakw 403
                    }
71 jakw 404
                    break;
70 jakw 405
                }
406
            }
407
        }
408
    }
409
 
207 flgw 410
}
70 jakw 411
 
233 - 412
void triangulate(const StereoRectifyier& stereoRect,
413
                 const std::vector<cv::Vec2f>& q0,
414
                 const std::vector<cv::Vec2f>& q1,
415
                 std::vector<cv::Point3f>& Q) {
70 jakw 416
 
233 - 417
    // cv::Mat QMatHomogenous, QMat;
418
    // cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
419
    // cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
70 jakw 420
 
233 - 421
    // // Undo rectification
422
    // cv::Mat R0Inv;
423
    // cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
424
    // QMat = R0Inv*QMat;
230 jakw 425
 
233 - 426
    // cvtools::matToPoints3f(QMat, Q);
231 jakw 427
 
428
 
429
    // Triangulate by means of disparity projection
430
    Q.resize(q0.size());
233 - 431
    cv::Matx44f QRectx = cv::Matx44f(stereoRect.QRect);
432
    cv::Matx33f R0invx = cv::Matx33f(cv::Mat(stereoRect.R0.t()));
231 jakw 433
 
434
    #pragma omp parallel for
233 - 435
    for(unsigned int i=0; i < q0.size(); i++){
436
        float disparity = q0[i][0] - q1[i][0];
231 jakw 437
        cv::Vec4f Qih = QRectx*cv::Vec4f(q0[i][0], q0[i][1], disparity, 1.0);
233 - 438
        float winv = float(1.0) / Qih[3];
231 jakw 439
        Q[i] = R0invx * cv::Point3f(Qih[0]*winv, Qih[1]*winv, Qih[2]*winv);
440
    }
4 jakw 441
}