181 |
jakw |
1 |
//
|
|
|
2 |
// Two Frequency Phase Shifting using the Heterodyne Principle
|
|
|
3 |
//
|
234 |
sorgre |
4 |
// This implementation follows "Reich, Ritter, Thesing, White light heterodyne
|
|
|
5 |
// principle for 3D-measurement", SPIE (1997).
|
|
|
6 |
//
|
181 |
jakw |
7 |
// Different from the paper, it uses only two different frequencies.
|
|
|
8 |
//
|
234 |
sorgre |
9 |
// The number of periods in the primary frequency can be chosen freely, but
|
|
|
10 |
// small changes can have a considerable impact on quality. The number of
|
|
|
11 |
// phase shifts can be chosen freely (min. 3), and higher values reduce the
|
|
|
12 |
// effects of image noise.They also allow us to filter bad points based on
|
|
|
13 |
// energy at non-primary frequencies.
|
181 |
jakw |
14 |
//
|
|
|
15 |
|
128 |
jakw |
16 |
#include "AlgorithmPhaseShiftTwoFreq.h"
|
4 |
jakw |
17 |
#include <math.h>
|
|
|
18 |
|
|
|
19 |
#include "cvtools.h"
|
182 |
jakw |
20 |
#include "algorithmtools.h"
|
4 |
jakw |
21 |
|
231 |
jakw |
22 |
#include <omp.h>
|
|
|
23 |
|
143 |
jakw |
24 |
static unsigned int nStepsPrimary = 16; // number of shifts/steps in primary
|
|
|
25 |
static unsigned int nStepsSecondary = 8; // number of shifts/steps in secondary
|
190 |
jakw |
26 |
static float nPeriodsPrimary = 40; // primary period
|
4 |
jakw |
27 |
|
234 |
sorgre |
28 |
AlgorithmPhaseShiftTwoFreq::AlgorithmPhaseShiftTwoFreq(unsigned int _screenCols,
|
|
|
29 |
unsigned int _screenRows)
|
|
|
30 |
: Algorithm(_screenCols, _screenRows) {
|
4 |
jakw |
31 |
|
72 |
jakw |
32 |
// Set N
|
118 |
jakw |
33 |
N = 2+nStepsPrimary+nStepsSecondary;
|
72 |
jakw |
34 |
|
190 |
jakw |
35 |
// Determine the secondary (wider) period to fulfill the heterodyne condition
|
|
|
36 |
float nPeriodsSecondary = nPeriodsPrimary + 1;
|
74 |
jakw |
37 |
|
70 |
jakw |
38 |
// all on pattern
|
|
|
39 |
cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
|
|
|
40 |
patterns.push_back(allOn);
|
|
|
41 |
|
|
|
42 |
// all off pattern
|
|
|
43 |
cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
|
|
|
44 |
patterns.push_back(allOff);
|
|
|
45 |
|
74 |
jakw |
46 |
// Primary encoding patterns
|
118 |
jakw |
47 |
for(unsigned int i=0; i<nStepsPrimary; i++){
|
192 |
jakw |
48 |
float phase = 2.0*CV_PI/nStepsPrimary * i;
|
190 |
jakw |
49 |
float pitch = screenCols/nPeriodsPrimary;
|
70 |
jakw |
50 |
cv::Mat patternI(1,1,CV_8U);
|
|
|
51 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
|
|
52 |
patterns.push_back(patternI.t());
|
|
|
53 |
}
|
4 |
jakw |
54 |
|
74 |
jakw |
55 |
// Secondary encoding patterns
|
118 |
jakw |
56 |
for(unsigned int i=0; i<nStepsSecondary; i++){
|
192 |
jakw |
57 |
float phase = 2.0*CV_PI/nStepsSecondary * i;
|
190 |
jakw |
58 |
float pitch = screenCols/nPeriodsSecondary;
|
72 |
jakw |
59 |
cv::Mat patternI(1,1,CV_8U);
|
70 |
jakw |
60 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
|
|
61 |
patterns.push_back(patternI.t());
|
4 |
jakw |
62 |
}
|
|
|
63 |
|
72 |
jakw |
64 |
|
4 |
jakw |
65 |
}
|
|
|
66 |
|
128 |
jakw |
67 |
cv::Mat AlgorithmPhaseShiftTwoFreq::getEncodingPattern(unsigned int depth){
|
4 |
jakw |
68 |
return patterns[depth];
|
|
|
69 |
}
|
|
|
70 |
|
233 |
- |
71 |
|
|
|
72 |
struct StereoRectifyier {
|
|
|
73 |
cv::Mat map0X, map0Y, map1X, map1Y;
|
|
|
74 |
cv::Mat R0, R1, P0, P1, QRect;
|
|
|
75 |
};
|
244 |
jakw |
76 |
void getStereoRectifier(const SMCalibrationParameters &calibration,
|
|
|
77 |
const cv::Size& frameSize,
|
|
|
78 |
StereoRectifyier& stereoRect){
|
233 |
- |
79 |
|
244 |
jakw |
80 |
// cv::stereoRectify segfaults unless R is double precision
|
|
|
81 |
cv::Mat R, T;
|
|
|
82 |
cv::Mat(calibration.R1).convertTo(R, CV_64F);
|
|
|
83 |
cv::Mat(calibration.T1).convertTo(T, CV_64F);
|
233 |
- |
84 |
|
244 |
jakw |
85 |
cv::stereoRectify(calibration.K0, calibration.k0,
|
|
|
86 |
calibration.K1, calibration.k1,
|
|
|
87 |
frameSize, R, T,
|
|
|
88 |
stereoRect.R0, stereoRect.R1,
|
|
|
89 |
stereoRect.P0, stereoRect.P1,
|
|
|
90 |
stereoRect.QRect, 0);
|
|
|
91 |
|
|
|
92 |
// Interpolation maps (lens distortion and rectification)
|
|
|
93 |
cv::initUndistortRectifyMap(calibration.K0, calibration.k0,
|
|
|
94 |
stereoRect.R0, stereoRect.P0,
|
|
|
95 |
frameSize, CV_32F,
|
|
|
96 |
stereoRect.map0X, stereoRect.map0Y);
|
|
|
97 |
cv::initUndistortRectifyMap(calibration.K1, calibration.k1,
|
|
|
98 |
stereoRect.R1, stereoRect.P1,
|
|
|
99 |
frameSize, CV_32F,
|
|
|
100 |
stereoRect.map1X, stereoRect.map1Y);
|
|
|
101 |
}
|
|
|
102 |
|
|
|
103 |
void determineAmplitudePhaseEnergy(std::vector<cv::Mat>& frames,
|
|
|
104 |
cv::Mat& amplitude,
|
|
|
105 |
cv::Mat& phase,
|
|
|
106 |
cv::Mat& energy) {
|
|
|
107 |
|
|
|
108 |
std::vector<cv::Mat> fourier = getDFTComponents(frames);
|
|
|
109 |
|
|
|
110 |
cv::phase(fourier[2], -fourier[3], phase);
|
|
|
111 |
|
|
|
112 |
// Signal energy at unit frequency
|
|
|
113 |
cv::magnitude(fourier[2], -fourier[3], amplitude);
|
|
|
114 |
|
|
|
115 |
// Collected signal energy at higher frequencies
|
|
|
116 |
energy = cv::Mat(phase.rows, phase.cols, CV_32F, cv::Scalar(0.0));
|
|
|
117 |
|
|
|
118 |
for(unsigned int i=0; i<frames.size()-1; i++){
|
|
|
119 |
cv::Mat magnitude;
|
|
|
120 |
cv::magnitude(fourier[i*2 + 2], fourier[i*2 + 3], magnitude);
|
|
|
121 |
cv::add(energy, magnitude, energy, cv::noArray(), CV_32F);
|
|
|
122 |
}
|
|
|
123 |
|
|
|
124 |
frames.clear();
|
|
|
125 |
}
|
|
|
126 |
|
|
|
127 |
void unWrapPhaseMap(const cv::Mat& phasePrimary,
|
|
|
128 |
const cv::Mat& phaseSecondary,
|
|
|
129 |
cv::Mat& phase) {
|
|
|
130 |
cv::Mat phaseEquivalent = phaseSecondary - phasePrimary;
|
|
|
131 |
phaseEquivalent = cvtools::modulo(phaseEquivalent, 2.0*CV_PI);
|
|
|
132 |
phase = unwrapWithCue(phasePrimary, phaseEquivalent, nPeriodsPrimary);
|
|
|
133 |
phase *= phasePrimary.cols/(2.0*CV_PI);
|
|
|
134 |
}
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
void matchPhaseMaps(const cv::Mat& occlusion0, const cv::Mat& occlusion1,
|
|
|
138 |
const cv::Mat& phase0, const cv::Mat& phase1,
|
|
|
139 |
std::vector<cv::Vec2f>& q0, std::vector<cv::Vec2f>& q1) {
|
|
|
140 |
|
|
|
141 |
#pragma omp parallel for
|
|
|
142 |
for(int row=0; row<occlusion0.rows; row++){
|
|
|
143 |
for(int col=0; col<occlusion0.cols; col++){
|
|
|
144 |
|
|
|
145 |
if(!occlusion0.at<char>(row,col))
|
|
|
146 |
continue;
|
|
|
147 |
|
|
|
148 |
float phase0i = phase0.at<float>(row,col);
|
|
|
149 |
for(int col1=0; col1<phase1.cols-1; col1++){
|
|
|
150 |
|
|
|
151 |
if(!occlusion1.at<char>(row,col1) || !occlusion1.at<char>(row,col1+1))
|
|
|
152 |
continue;
|
|
|
153 |
|
|
|
154 |
float phase1Left = phase1.at<float>(row,col1);
|
|
|
155 |
float phase1Right = phase1.at<float>(row,col1+1);
|
|
|
156 |
|
|
|
157 |
bool match = (phase1Left <= phase0i)
|
|
|
158 |
&& (phase0i <= phase1Right)
|
|
|
159 |
&& (phase0i-phase1Left < 1.0)
|
|
|
160 |
&& (phase1Right-phase0i < 1.0)
|
|
|
161 |
&& (phase1Right-phase1Left > 0.1);
|
|
|
162 |
|
|
|
163 |
if(match){
|
|
|
164 |
|
|
|
165 |
float col1i = col1 + (phase0i-phase1Left)/(phase1Right-phase1Left);
|
|
|
166 |
|
|
|
167 |
#pragma omp critical
|
|
|
168 |
{
|
|
|
169 |
q0.push_back(cv::Point2f(col, row));
|
|
|
170 |
q1.push_back(cv::Point2f(col1i, row));
|
|
|
171 |
}
|
|
|
172 |
break;
|
|
|
173 |
}
|
|
|
174 |
}
|
|
|
175 |
}
|
|
|
176 |
}
|
|
|
177 |
|
|
|
178 |
}
|
|
|
179 |
|
|
|
180 |
void triangulate(const StereoRectifyier& stereoRect,
|
|
|
181 |
const std::vector<cv::Vec2f>& q0,
|
|
|
182 |
const std::vector<cv::Vec2f>& q1,
|
|
|
183 |
std::vector<cv::Point3f>& Q) {
|
|
|
184 |
|
|
|
185 |
// cv::Mat QMatHomogenous, QMat;
|
|
|
186 |
// cv::triangulatePoints(P0, P1, q0, q1, QMatHomogenous);
|
|
|
187 |
// cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
|
|
|
188 |
|
|
|
189 |
// // Undo rectification
|
|
|
190 |
// cv::Mat R0Inv;
|
|
|
191 |
// cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
|
|
|
192 |
// QMat = R0Inv*QMat;
|
|
|
193 |
|
|
|
194 |
// cvtools::matToPoints3f(QMat, Q);
|
|
|
195 |
|
|
|
196 |
|
|
|
197 |
// Triangulate by means of disparity projection
|
|
|
198 |
Q.resize(q0.size());
|
|
|
199 |
cv::Matx44f QRectx = cv::Matx44f(stereoRect.QRect);
|
|
|
200 |
cv::Matx33f R0invx = cv::Matx33f(cv::Mat(stereoRect.R0.t()));
|
|
|
201 |
|
|
|
202 |
#pragma omp parallel for
|
|
|
203 |
for(unsigned int i=0; i < q0.size(); i++){
|
|
|
204 |
float disparity = q0[i][0] - q1[i][0];
|
|
|
205 |
cv::Vec4f Qih = QRectx*cv::Vec4f(q0[i][0], q0[i][1], disparity, 1.0);
|
|
|
206 |
float winv = float(1.0) / Qih[3];
|
|
|
207 |
Q[i] = R0invx * cv::Point3f(Qih[0]*winv, Qih[1]*winv, Qih[2]*winv);
|
|
|
208 |
}
|
|
|
209 |
}
|
|
|
210 |
|
234 |
sorgre |
211 |
void AlgorithmPhaseShiftTwoFreq::
|
|
|
212 |
get3DPoints(const SMCalibrationParameters & calibration,
|
|
|
213 |
const std::vector<cv::Mat>& frames0,
|
|
|
214 |
const std::vector<cv::Mat>& frames1,
|
|
|
215 |
std::vector<cv::Point3f>& Q,
|
|
|
216 |
std::vector<cv::Vec3b>& color){
|
4 |
jakw |
217 |
|
70 |
jakw |
218 |
assert(frames0.size() == N);
|
|
|
219 |
assert(frames1.size() == N);
|
|
|
220 |
|
233 |
- |
221 |
StereoRectifyier stereoRect;
|
244 |
jakw |
222 |
getStereoRectifier(calibration,
|
234 |
sorgre |
223 |
cv::Size(frames0[0].cols, frames0[0].rows),
|
|
|
224 |
stereoRect);
|
231 |
jakw |
225 |
|
233 |
- |
226 |
// // Erode occlusion masks
|
|
|
227 |
// cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
|
|
|
228 |
|
|
|
229 |
cv::Mat up0, up1;
|
|
|
230 |
cv::Mat occlusion0, occlusion1;
|
|
|
231 |
cv::Mat color0, color1;
|
|
|
232 |
|
|
|
233 |
#pragma omp parallel sections
|
231 |
jakw |
234 |
{
|
233 |
- |
235 |
#pragma omp section
|
|
|
236 |
{
|
70 |
jakw |
237 |
|
233 |
- |
238 |
// Gray-scale and remap/rectify
|
|
|
239 |
std::vector<cv::Mat> frames0Rect(N);
|
178 |
jakw |
240 |
|
233 |
- |
241 |
for(unsigned int i=0; i<N; i++){
|
|
|
242 |
cv::Mat temp;
|
244 |
jakw |
243 |
if(frames1[i].depth() == CV_8U)
|
|
|
244 |
cv::cvtColor(frames1[i], temp, CV_BayerBG2GRAY);
|
|
|
245 |
else
|
|
|
246 |
temp = frames1[i];
|
234 |
sorgre |
247 |
cv::remap(temp, frames0Rect[i],
|
|
|
248 |
stereoRect.map0X, stereoRect.map0Y,
|
|
|
249 |
CV_INTER_LINEAR);
|
233 |
- |
250 |
}
|
207 |
flgw |
251 |
|
244 |
jakw |
252 |
// If images are HDR (float), we need to convert to uchar
|
|
|
253 |
frames0Rect[0].convertTo(color0, CV_8UC3);
|
234 |
sorgre |
254 |
|
233 |
- |
255 |
// Occlusion masks
|
|
|
256 |
cv::subtract(frames0Rect[0], frames0Rect[1], occlusion0);
|
|
|
257 |
occlusion0 = (occlusion0 > 25) & (occlusion0 < 250);
|
182 |
jakw |
258 |
|
233 |
- |
259 |
// Decode camera0
|
234 |
sorgre |
260 |
std::vector<cv::Mat> frames0Primary(frames0Rect.begin()+2,
|
|
|
261 |
frames0Rect.begin()+2+nStepsPrimary);
|
|
|
262 |
std::vector<cv::Mat> frames0Secondary(frames0Rect.begin()+2+nStepsPrimary,
|
|
|
263 |
frames0Rect.end());
|
70 |
jakw |
264 |
|
233 |
- |
265 |
frames0Rect.clear();
|
182 |
jakw |
266 |
|
233 |
- |
267 |
cv::Mat amplitude0Primary, amplitude0Secondary;
|
|
|
268 |
cv::Mat up0Primary, up0Secondary;
|
|
|
269 |
cv::Mat energy0Primary, energy0Secondary;
|
|
|
270 |
determineAmplitudePhaseEnergy(frames0Primary,
|
234 |
sorgre |
271 |
amplitude0Primary,
|
|
|
272 |
up0Primary,
|
|
|
273 |
energy0Primary);
|
233 |
- |
274 |
determineAmplitudePhaseEnergy(frames0Secondary,
|
234 |
sorgre |
275 |
amplitude0Secondary,
|
|
|
276 |
up0Secondary,
|
|
|
277 |
energy0Secondary);
|
207 |
flgw |
278 |
|
244 |
jakw |
279 |
unWrapPhaseMap(up0Primary, up0Secondary, up0);
|
231 |
jakw |
280 |
|
233 |
- |
281 |
// Threshold on energy at primary frequency
|
|
|
282 |
occlusion0 = occlusion0 & (amplitude0Primary > 5.0*nStepsPrimary);
|
|
|
283 |
// Threshold on energy ratios
|
|
|
284 |
occlusion0 = occlusion0 & (amplitude0Primary > 0.25*energy0Primary);
|
|
|
285 |
occlusion0 = occlusion0 & (amplitude0Secondary > 0.25*energy0Secondary);
|
231 |
jakw |
286 |
|
233 |
- |
287 |
// // Erode occlusion masks
|
|
|
288 |
// cv::erode(occlusion0, occlusion0, strel);
|
231 |
jakw |
289 |
|
244 |
jakw |
290 |
// Threshold on vertical gradient of phase
|
233 |
- |
291 |
cv::Mat edges0;
|
|
|
292 |
cv::Sobel(up0, edges0, -1, 1, 1, 5);
|
|
|
293 |
occlusion0 = occlusion0 & (abs(edges0) < 10);
|
182 |
jakw |
294 |
|
233 |
- |
295 |
#ifdef SM_DEBUG
|
|
|
296 |
cvtools::writeMat(up0Primary, "up0Primary.mat", "up0Primary");
|
|
|
297 |
cvtools::writeMat(up0Secondary, "up0Secondary.mat", "up0Secondary");
|
|
|
298 |
cvtools::writeMat(up0, "up0.mat", "up0");
|
234 |
sorgre |
299 |
cvtools::writeMat(amplitude0Primary,
|
|
|
300 |
"amplitude0Primary.mat", "amplitude0Primary");
|
|
|
301 |
cvtools::writeMat(amplitude0Secondary,
|
|
|
302 |
"amplitude0Secondary.mat", "amplitude0Secondary");
|
|
|
303 |
cvtools::writeMat(energy0Primary,
|
|
|
304 |
"energy0Primary.mat", "energy0Primary");
|
|
|
305 |
cvtools::writeMat(energy0Secondary,
|
|
|
306 |
"energy0Secondary.mat", "energy0Secondary");
|
233 |
- |
307 |
cvtools::writeMat(edges0, "edges0.mat", "edges0");
|
|
|
308 |
cvtools::writeMat(occlusion0, "occlusion0.mat", "occlusion0");
|
234 |
sorgre |
309 |
cvtools::writeMat(color0, "color0.mat", "color0");
|
233 |
- |
310 |
#endif
|
182 |
jakw |
311 |
|
233 |
- |
312 |
}
|
|
|
313 |
#pragma omp section
|
|
|
314 |
{
|
70 |
jakw |
315 |
|
233 |
- |
316 |
// Gray-scale and remap
|
|
|
317 |
std::vector<cv::Mat> frames1Rect(N);
|
200 |
jakw |
318 |
|
233 |
- |
319 |
for(unsigned int i=0; i<N; i++){
|
|
|
320 |
cv::Mat temp;
|
244 |
jakw |
321 |
if(frames1[i].depth() == CV_8U)
|
|
|
322 |
cv::cvtColor(frames1[i], temp, CV_BayerBG2GRAY);
|
|
|
323 |
else
|
|
|
324 |
temp = frames1[i];
|
234 |
sorgre |
325 |
cv::remap(temp, frames1Rect[i],
|
|
|
326 |
stereoRect.map1X, stereoRect.map1Y,
|
|
|
327 |
CV_INTER_LINEAR);
|
233 |
- |
328 |
}
|
182 |
jakw |
329 |
|
244 |
jakw |
330 |
// If images are HDR (float), we need to convert to uchar
|
|
|
331 |
frames1Rect[0].convertTo(color1, CV_8UC3);
|
234 |
sorgre |
332 |
|
233 |
- |
333 |
// Occlusion masks
|
|
|
334 |
cv::subtract(frames1Rect[0], frames1Rect[1], occlusion1);
|
|
|
335 |
occlusion1 = (occlusion1 > 25) & (occlusion1 < 250);
|
|
|
336 |
|
|
|
337 |
// Decode camera1
|
234 |
sorgre |
338 |
std::vector<cv::Mat> frames1Primary(frames1Rect.begin()+2,
|
|
|
339 |
frames1Rect.begin()+2+nStepsPrimary);
|
|
|
340 |
std::vector<cv::Mat> frames1Secondary(frames1Rect.begin()+2+nStepsPrimary,
|
|
|
341 |
frames1Rect.end());
|
233 |
- |
342 |
|
|
|
343 |
frames1Rect.clear();
|
|
|
344 |
|
|
|
345 |
cv::Mat amplitude1Primary, amplitude1Secondary;
|
|
|
346 |
cv::Mat up1Primary, up1Secondary;
|
|
|
347 |
cv::Mat energy1Primary, energy1Secondary;
|
|
|
348 |
determineAmplitudePhaseEnergy(frames1Primary,
|
234 |
sorgre |
349 |
amplitude1Primary,
|
|
|
350 |
up1Primary,
|
|
|
351 |
energy1Primary);
|
233 |
- |
352 |
determineAmplitudePhaseEnergy(frames1Secondary,
|
234 |
sorgre |
353 |
amplitude1Secondary,
|
|
|
354 |
up1Secondary,
|
|
|
355 |
energy1Secondary);
|
233 |
- |
356 |
|
244 |
jakw |
357 |
unWrapPhaseMap(up1Primary, up1Secondary, up1);
|
233 |
- |
358 |
|
|
|
359 |
// Threshold on energy at primary frequency
|
|
|
360 |
occlusion1 = occlusion1 & (amplitude1Primary > 5.0*nStepsPrimary);
|
|
|
361 |
// Threshold on energy ratios
|
|
|
362 |
occlusion1 = occlusion1 & (amplitude1Primary > 0.25*energy1Primary);
|
|
|
363 |
occlusion1 = occlusion1 & (amplitude1Secondary > 0.25*energy1Secondary);
|
|
|
364 |
|
|
|
365 |
// // Erode occlusion masks
|
|
|
366 |
// cv::erode(occlusion1, occlusion1, strel);
|
|
|
367 |
|
|
|
368 |
|
244 |
jakw |
369 |
// Threshold on vertical gradient of phase
|
233 |
- |
370 |
cv::Mat edges1;
|
|
|
371 |
cv::Sobel(up1, edges1, -1, 1, 1, 5);
|
|
|
372 |
occlusion1 = occlusion1 & (abs(edges1) < 10);
|
|
|
373 |
|
|
|
374 |
#ifdef SM_DEBUG
|
|
|
375 |
cvtools::writeMat(up1Primary, "up1Primary.mat", "up1Primary");
|
|
|
376 |
cvtools::writeMat(up1Secondary, "up1Secondary.mat", "up1Secondary");
|
|
|
377 |
cvtools::writeMat(up1, "up1.mat", "up1");
|
234 |
sorgre |
378 |
cvtools::writeMat(amplitude1Primary,
|
|
|
379 |
"amplitude1Primary.mat", "amplitude1Primary");
|
|
|
380 |
cvtools::writeMat(amplitude1Secondary,
|
|
|
381 |
"amplitude1Secondary.mat", "amplitude1Secondary");
|
|
|
382 |
cvtools::writeMat(energy1Primary,
|
|
|
383 |
"energy1Primary.mat", "energy1Primary");
|
|
|
384 |
cvtools::writeMat(energy1Secondary,
|
|
|
385 |
"energy1Secondary.mat", "energy1Secondary");
|
233 |
- |
386 |
cvtools::writeMat(edges1, "edges1.mat", "edges1");
|
|
|
387 |
cvtools::writeMat(occlusion1, "occlusion1.mat", "occlusion1");
|
234 |
sorgre |
388 |
cvtools::writeMat(color1, "color1.mat", "color1");
|
233 |
- |
389 |
#endif
|
|
|
390 |
|
|
|
391 |
}
|
182 |
jakw |
392 |
}
|
|
|
393 |
|
207 |
flgw |
394 |
|
233 |
- |
395 |
// Match phase maps
|
185 |
jakw |
396 |
|
233 |
- |
397 |
// camera0 against camera1
|
|
|
398 |
std::vector<cv::Vec2f> q0, q1;
|
|
|
399 |
matchPhaseMaps(occlusion0, occlusion1, up0, up1, q0, q1);
|
231 |
jakw |
400 |
|
233 |
- |
401 |
size_t nMatches = q0.size();
|
|
|
402 |
|
|
|
403 |
if(nMatches < 1){
|
|
|
404 |
Q.resize(0);
|
|
|
405 |
color.resize(0);
|
|
|
406 |
|
|
|
407 |
return;
|
231 |
jakw |
408 |
}
|
234 |
sorgre |
409 |
else {
|
233 |
- |
410 |
// Retrieve color information
|
|
|
411 |
color.resize(nMatches);
|
|
|
412 |
for(unsigned int i=0; i<nMatches; i++){
|
|
|
413 |
|
|
|
414 |
cv::Vec3b c0 = color0.at<cv::Vec3b>(int(q0[i][1]), int(q0[i][0]));
|
|
|
415 |
cv::Vec3b c1 = color1.at<cv::Vec3b>(int(q1[i][1]), int(q1[i][0]));
|
|
|
416 |
|
|
|
417 |
color[i] = 0.5*c0 + 0.5*c1;
|
|
|
418 |
}
|
231 |
jakw |
419 |
}
|
207 |
flgw |
420 |
|
233 |
- |
421 |
// Triangulate points
|
|
|
422 |
triangulate(stereoRect, q0, q1, Q);
|
207 |
flgw |
423 |
|
233 |
- |
424 |
}
|
207 |
flgw |
425 |
|