41 |
jakw |
1 |
#include "AlgorithmPhaseShift.h"
|
4 |
jakw |
2 |
#include <math.h>
|
|
|
3 |
|
|
|
4 |
#include "cvtools.h"
|
|
|
5 |
|
|
|
6 |
#ifndef M_PI
|
|
|
7 |
#define M_PI 3.14159265358979323846
|
|
|
8 |
#endif
|
|
|
9 |
|
74 |
jakw |
10 |
static unsigned int nSteps = 20; // number of shifts/steps in primary
|
|
|
11 |
static float pPrimary = 200; // primary period
|
4 |
jakw |
12 |
|
41 |
jakw |
13 |
// Algorithm
|
4 |
jakw |
14 |
static cv::Mat computePhaseVector(unsigned int length, float phase, float pitch){
|
|
|
15 |
|
|
|
16 |
cv::Mat phaseVector(length, 1, CV_8UC3);
|
|
|
17 |
//phaseVector.setTo(0);
|
|
|
18 |
|
|
|
19 |
const float pi = M_PI;
|
|
|
20 |
|
|
|
21 |
// Loop through vector
|
|
|
22 |
for(int i=0; i<phaseVector.rows; i++){
|
|
|
23 |
// Amplitude of channels
|
71 |
jakw |
24 |
float amp = 0.5*(1+cos(2*pi*i/pitch - phase));
|
4 |
jakw |
25 |
phaseVector.at<cv::Vec3b>(i, 0) = cv::Vec3b(255.0*amp,255.0*amp,255.0*amp);
|
|
|
26 |
}
|
|
|
27 |
|
|
|
28 |
return phaseVector;
|
|
|
29 |
}
|
|
|
30 |
|
70 |
jakw |
31 |
AlgorithmPhaseShift::AlgorithmPhaseShift(unsigned int _screenCols, unsigned int _screenRows) : Algorithm(_screenCols, _screenRows){
|
4 |
jakw |
32 |
|
72 |
jakw |
33 |
// Set N
|
74 |
jakw |
34 |
N = 2+nSteps+3;
|
72 |
jakw |
35 |
|
74 |
jakw |
36 |
// Determine the secondary (wider) period
|
|
|
37 |
float pSecondary = (screenCols*pPrimary)/(screenCols-pPrimary);
|
|
|
38 |
|
70 |
jakw |
39 |
// all on pattern
|
|
|
40 |
cv::Mat allOn(1, screenCols, CV_8UC3, cv::Scalar::all(255));
|
|
|
41 |
patterns.push_back(allOn);
|
|
|
42 |
|
|
|
43 |
// all off pattern
|
|
|
44 |
cv::Mat allOff(1, screenCols, CV_8UC3, cv::Scalar::all(0));
|
|
|
45 |
patterns.push_back(allOff);
|
|
|
46 |
|
4 |
jakw |
47 |
// Precompute encoded patterns
|
|
|
48 |
const float pi = M_PI;
|
|
|
49 |
|
74 |
jakw |
50 |
// Primary encoding patterns
|
70 |
jakw |
51 |
for(unsigned int i=0; i<nSteps; i++){
|
|
|
52 |
float phase = 2.0*pi/nSteps * i;
|
74 |
jakw |
53 |
float pitch = pPrimary;
|
70 |
jakw |
54 |
cv::Mat patternI(1,1,CV_8U);
|
|
|
55 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
|
|
56 |
patterns.push_back(patternI.t());
|
|
|
57 |
}
|
4 |
jakw |
58 |
|
74 |
jakw |
59 |
// Secondary encoding patterns
|
|
|
60 |
for(unsigned int i=0; i<3; i++){
|
|
|
61 |
float phase = 2.0*pi/3 * i;
|
|
|
62 |
float pitch = pSecondary;
|
72 |
jakw |
63 |
cv::Mat patternI(1,1,CV_8U);
|
70 |
jakw |
64 |
patternI = computePhaseVector(screenCols, phase, pitch);
|
|
|
65 |
patterns.push_back(patternI.t());
|
4 |
jakw |
66 |
}
|
|
|
67 |
|
72 |
jakw |
68 |
|
4 |
jakw |
69 |
}
|
|
|
70 |
|
41 |
jakw |
71 |
cv::Mat AlgorithmPhaseShift::getEncodingPattern(unsigned int depth){
|
4 |
jakw |
72 |
return patterns[depth];
|
|
|
73 |
}
|
|
|
74 |
|
|
|
75 |
|
70 |
jakw |
76 |
// Absolute phase from 3 frames
|
|
|
77 |
cv::Mat getPhase(const cv::Mat I1, const cv::Mat I2, const cv::Mat I3){
|
4 |
jakw |
78 |
|
70 |
jakw |
79 |
cv::Mat_<float> I1_(I1);
|
|
|
80 |
cv::Mat_<float> I2_(I2);
|
|
|
81 |
cv::Mat_<float> I3_(I3);
|
|
|
82 |
|
|
|
83 |
cv::Mat phase;
|
|
|
84 |
|
|
|
85 |
// One call approach
|
|
|
86 |
cv::phase(2.0*I1_-I3_-I2_, sqrt(3.0)*(I2_-I3_), phase);
|
|
|
87 |
return phase;
|
|
|
88 |
|
|
|
89 |
}
|
|
|
90 |
|
|
|
91 |
// Phase unwrapping by means of a phase cue
|
74 |
jakw |
92 |
cv::Mat unwrapWithCue(const cv::Mat up, const cv::Mat upCue, float nPhases){
|
70 |
jakw |
93 |
|
4 |
jakw |
94 |
const float pi = M_PI;
|
|
|
95 |
|
70 |
jakw |
96 |
// Determine number of jumps
|
|
|
97 |
cv::Mat P = (upCue*nPhases-up)/(2*pi);
|
4 |
jakw |
98 |
|
70 |
jakw |
99 |
// Round to integers
|
|
|
100 |
P.convertTo(P, CV_8U);
|
|
|
101 |
P.convertTo(P, CV_32F);
|
4 |
jakw |
102 |
|
70 |
jakw |
103 |
// Add to phase
|
|
|
104 |
cv::Mat upUnwrapped = up + P*2*pi;
|
4 |
jakw |
105 |
|
70 |
jakw |
106 |
// Scale to range [0; 2pi]
|
|
|
107 |
upUnwrapped *= 1.0/nPhases;
|
|
|
108 |
|
|
|
109 |
return upUnwrapped;
|
4 |
jakw |
110 |
}
|
|
|
111 |
|
70 |
jakw |
112 |
// Absolute phase and magnitude from N frames
|
|
|
113 |
std::vector<cv::Mat> getDFTComponents(const std::vector<cv::Mat> frames){
|
|
|
114 |
|
|
|
115 |
unsigned int N = frames.size();
|
|
|
116 |
|
71 |
jakw |
117 |
// std::vector<cv::Mat> framesReverse = frames;
|
|
|
118 |
// std::reverse(framesReverse.begin(), framesReverse.end());
|
70 |
jakw |
119 |
|
|
|
120 |
// DFT approach
|
|
|
121 |
cv::Mat I;
|
|
|
122 |
cv::merge(frames, I);
|
|
|
123 |
unsigned int w = I.cols;
|
|
|
124 |
unsigned int h = I.rows;
|
|
|
125 |
I = I.reshape(1, h*w);
|
|
|
126 |
I.convertTo(I, CV_32F);
|
|
|
127 |
cv::Mat fI;
|
|
|
128 |
cv::dft(I, fI, cv::DFT_ROWS + cv::DFT_COMPLEX_OUTPUT);
|
|
|
129 |
fI = fI.reshape(N*2, h);
|
|
|
130 |
|
|
|
131 |
std::vector<cv::Mat> fIcomp;
|
|
|
132 |
cv::split(fI, fIcomp);
|
|
|
133 |
|
|
|
134 |
return fIcomp;
|
|
|
135 |
|
|
|
136 |
}
|
|
|
137 |
|
42 |
jakw |
138 |
void AlgorithmPhaseShift::get3DPoints(SMCalibrationParameters calibration, const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point3f>& Q, std::vector<cv::Vec3b>& color){
|
4 |
jakw |
139 |
|
70 |
jakw |
140 |
const float pi = M_PI;
|
|
|
141 |
|
|
|
142 |
assert(frames0.size() == N);
|
|
|
143 |
assert(frames1.size() == N);
|
|
|
144 |
|
|
|
145 |
int frameRows = frames0[0].rows;
|
|
|
146 |
int frameCols = frames0[0].cols;
|
|
|
147 |
|
72 |
jakw |
148 |
// Gray-scale everything
|
70 |
jakw |
149 |
std::vector<cv::Mat> frames0Gray(N);
|
|
|
150 |
std::vector<cv::Mat> frames1Gray(N);
|
|
|
151 |
for(int i=0; i<N; i++){
|
|
|
152 |
cv::cvtColor(frames0[i], frames0Gray[i], CV_RGB2GRAY);
|
|
|
153 |
cv::cvtColor(frames1[i], frames1Gray[i], CV_RGB2GRAY);
|
|
|
154 |
}
|
|
|
155 |
|
|
|
156 |
// Decode camera0
|
74 |
jakw |
157 |
std::vector<cv::Mat> frames0Primary(frames0Gray.begin()+2, frames0Gray.begin()+2+nSteps);
|
|
|
158 |
std::vector<cv::Mat> frames0Secondary(frames0Gray.begin()+2+nSteps, frames0Gray.begin()+2+nSteps+3);
|
|
|
159 |
std::vector<cv::Mat> F0Enc = getDFTComponents(frames0Primary);
|
|
|
160 |
cv::Mat up0Primary;
|
|
|
161 |
cv::phase(F0Enc[2], -F0Enc[3], up0Primary);
|
|
|
162 |
cv::Mat up0Secondary = getPhase(frames0Secondary[0], frames0Secondary[1], frames0Secondary[2]);
|
|
|
163 |
cv::Mat up0Equivalent = up0Primary - up0Secondary;
|
|
|
164 |
up0Equivalent = cvtools::modulo(up0Equivalent, 2*pi);
|
|
|
165 |
cv::Mat up0 = unwrapWithCue(up0Primary, up0Equivalent, (float)screenCols/pPrimary);
|
70 |
jakw |
166 |
up0 *= screenCols/(2*pi);
|
|
|
167 |
|
|
|
168 |
// Decode camera1
|
74 |
jakw |
169 |
std::vector<cv::Mat> frames1Primary(frames1Gray.begin()+2, frames1Gray.begin()+2+nSteps);
|
|
|
170 |
std::vector<cv::Mat> frames1Secondary(frames1Gray.begin()+2+nSteps, frames1Gray.begin()+2+nSteps+3);
|
|
|
171 |
std::vector<cv::Mat> F1Enc = getDFTComponents(frames1Primary);
|
|
|
172 |
cv::Mat up1Primary;
|
|
|
173 |
cv::phase(F1Enc[2], -F1Enc[3], up1Primary);
|
|
|
174 |
cv::Mat up1Secondary = getPhase(frames1Secondary[0], frames1Secondary[1], frames1Secondary[2]);
|
|
|
175 |
cv::Mat up1Equivalent = up1Primary - up1Secondary;
|
|
|
176 |
up1Equivalent = cvtools::modulo(up1Equivalent, 2*pi);
|
|
|
177 |
cv::Mat up1 = unwrapWithCue(up1Primary, up1Equivalent, (float)screenCols/pPrimary);
|
70 |
jakw |
178 |
up1 *= screenCols/(2*pi);
|
|
|
179 |
|
71 |
jakw |
180 |
|
70 |
jakw |
181 |
// Rectifying homographies (rotation+projections)
|
|
|
182 |
cv::Size frameSize(frameCols, frameRows);
|
|
|
183 |
cv::Mat R, T;
|
|
|
184 |
// stereoRectify segfaults unless R is double precision
|
|
|
185 |
cv::Mat(calibration.R1).convertTo(R, CV_64F);
|
|
|
186 |
cv::Mat(calibration.T1).convertTo(T, CV_64F);
|
|
|
187 |
cv::Mat R0, R1, P0, P1, QRect;
|
|
|
188 |
cv::stereoRectify(calibration.K0, calibration.k0, calibration.K1, calibration.k1, frameSize, R, T, R0, R1, P0, P1, QRect, 0);
|
|
|
189 |
|
|
|
190 |
// Interpolation maps (lens distortion and rectification)
|
|
|
191 |
cv::Mat map0X, map0Y, map1X, map1Y;
|
|
|
192 |
cv::initUndistortRectifyMap(calibration.K0, calibration.k0, R0, P0, frameSize, CV_32F, map0X, map0Y);
|
|
|
193 |
cv::initUndistortRectifyMap(calibration.K1, calibration.k1, R1, P1, frameSize, CV_32F, map1X, map1Y);
|
|
|
194 |
|
|
|
195 |
// Phase remaps
|
|
|
196 |
cv::Mat up0Rect, up1Rect;
|
|
|
197 |
cv::remap(up0, up0Rect, map0X, map0Y, CV_INTER_CUBIC);
|
|
|
198 |
cv::remap(up1, up1Rect, map1X, map1Y, CV_INTER_CUBIC);
|
|
|
199 |
|
74 |
jakw |
200 |
//cvtools::writeMat(up0Rect, "up0Rect.mat", "up0Rect");
|
|
|
201 |
//cvtools::writeMat(up1Rect, "up1Rect.mat", "up1Rect");
|
71 |
jakw |
202 |
|
70 |
jakw |
203 |
// Color remaps
|
|
|
204 |
cv::Mat color0Rect, color1Rect;
|
|
|
205 |
cv::remap(frames0[0], color0Rect, map0X, map0Y, CV_INTER_CUBIC);
|
|
|
206 |
cv::remap(frames1[0], color1Rect, map1X, map1Y, CV_INTER_CUBIC);
|
|
|
207 |
|
74 |
jakw |
208 |
//cvtools::writeMat(color0Rect, "color0Rect.mat", "color0Rect");
|
|
|
209 |
//cvtools::writeMat(color1Rect, "color1Rect.mat", "color1Rect");
|
71 |
jakw |
210 |
|
70 |
jakw |
211 |
// On/off remaps
|
|
|
212 |
cv::Mat frames0OnRect, frames0OffRect;
|
|
|
213 |
cv::remap(frames0Gray[0], frames0OnRect, map0X, map0Y, CV_INTER_CUBIC);
|
|
|
214 |
cv::remap(frames0Gray[1], frames0OffRect, map0X, map0Y, CV_INTER_CUBIC);
|
|
|
215 |
|
|
|
216 |
cv::Mat frames1OnRect, frames1OffRect;
|
71 |
jakw |
217 |
cv::remap(frames1Gray[0], frames1OnRect, map1X, map1Y, CV_INTER_CUBIC);
|
|
|
218 |
cv::remap(frames1Gray[1], frames1OffRect, map1X, map1Y, CV_INTER_CUBIC);
|
70 |
jakw |
219 |
|
|
|
220 |
// Occlusion masks
|
|
|
221 |
cv::Mat occlusion0Rect, occlusion1Rect;
|
|
|
222 |
cv::subtract(frames0OnRect, frames0OffRect, occlusion0Rect);
|
|
|
223 |
occlusion0Rect = occlusion0Rect > 50;
|
|
|
224 |
cv::subtract(frames1OnRect, frames1OffRect, occlusion1Rect);
|
|
|
225 |
occlusion1Rect = occlusion1Rect > 50;
|
|
|
226 |
|
74 |
jakw |
227 |
//cvtools::writeMat(occlusion0Rect, "occlusion0Rect.mat", "occlusion0Rect");
|
|
|
228 |
//cvtools::writeMat(occlusion1Rect, "occlusion1Rect.mat", "occlusion1Rect");
|
|
|
229 |
|
70 |
jakw |
230 |
// Erode occlusion masks
|
74 |
jakw |
231 |
cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(5,5));
|
70 |
jakw |
232 |
cv::erode(occlusion0Rect, occlusion0Rect, strel);
|
|
|
233 |
cv::erode(occlusion1Rect, occlusion1Rect, strel);
|
|
|
234 |
|
71 |
jakw |
235 |
// Threshold on gradient of phase
|
|
|
236 |
cv::Mat edges0;
|
73 |
jakw |
237 |
cv::Sobel(up0Rect, edges0, -1, 1, 0, 5);
|
|
|
238 |
occlusion0Rect = occlusion0Rect & (abs(edges0) < 150);
|
71 |
jakw |
239 |
|
|
|
240 |
cv::Mat edges1;
|
73 |
jakw |
241 |
cv::Sobel(up1Rect, edges1, -1, 1, 0, 5);
|
|
|
242 |
occlusion1Rect = occlusion1Rect & (abs(edges1) < 150);
|
71 |
jakw |
243 |
|
74 |
jakw |
244 |
//cvtools::writeMat(edges0, "edges0.mat", "edges0");
|
|
|
245 |
//cvtools::writeMat(edges1, "edges1.mat", "edges1");
|
71 |
jakw |
246 |
|
70 |
jakw |
247 |
// Match phase maps
|
|
|
248 |
int frameRectRows = map0X.rows;
|
|
|
249 |
int frameRectCols = map0X.cols;
|
|
|
250 |
|
|
|
251 |
// camera0 against camera1
|
|
|
252 |
std::vector<cv::Vec2f> q0Rect, q1Rect;
|
|
|
253 |
for(int row=0; row<frameRectRows; row++){
|
|
|
254 |
for(int col=0; col<frameRectCols; col++){
|
|
|
255 |
|
|
|
256 |
if(!occlusion0Rect.at<char>(row,col))
|
|
|
257 |
continue;
|
|
|
258 |
|
|
|
259 |
float up0i = up0Rect.at<float>(row,col);
|
|
|
260 |
for(int col1=0; col1<up1Rect.cols-1; col1++){
|
|
|
261 |
|
|
|
262 |
if(!occlusion1Rect.at<char>(row,col1) || !occlusion1Rect.at<char>(row,col1+1))
|
|
|
263 |
continue;
|
|
|
264 |
|
|
|
265 |
float up1Left = up1Rect.at<float>(row,col1);
|
|
|
266 |
float up1Right = up1Rect.at<float>(row,col1+1);
|
|
|
267 |
|
74 |
jakw |
268 |
if((up1Left <= up0i) && (up0i <= up1Right) && (up0i-up1Left < 1) && (up1Right-up0i < 1)){
|
70 |
jakw |
269 |
|
|
|
270 |
float col1i = col1 + (up0i-up1Left)/(up1Right-up1Left);
|
|
|
271 |
|
|
|
272 |
q0Rect.push_back(cv::Point2f(col, row));
|
|
|
273 |
q1Rect.push_back(cv::Point2f(col1i, row));
|
71 |
jakw |
274 |
|
|
|
275 |
break;
|
70 |
jakw |
276 |
}
|
|
|
277 |
}
|
|
|
278 |
}
|
|
|
279 |
}
|
|
|
280 |
|
|
|
281 |
// camera1 against camera0
|
74 |
jakw |
282 |
for(int row=0; row<frameRectRows; row++){
|
|
|
283 |
for(int col=0; col<frameRectCols; col++){
|
70 |
jakw |
284 |
|
74 |
jakw |
285 |
if(!occlusion1Rect.at<char>(row,col))
|
|
|
286 |
continue;
|
|
|
287 |
|
|
|
288 |
float up1i = up1Rect.at<float>(row,col);
|
|
|
289 |
for(int col0=0; col0<up0Rect.cols-1; col0++){
|
|
|
290 |
|
|
|
291 |
if(!occlusion0Rect.at<char>(row,col0) || !occlusion0Rect.at<char>(row,col0+1))
|
|
|
292 |
continue;
|
|
|
293 |
|
|
|
294 |
float up0Left = up0Rect.at<float>(row,col0);
|
|
|
295 |
float up0Right = up0Rect.at<float>(row,col0+1);
|
|
|
296 |
|
|
|
297 |
if((up0Left <= up1i) && (up1i <= up0Right) && (up1i-up0Left < 1) && (up0Right-up1i < 1)){
|
|
|
298 |
|
|
|
299 |
float col0i = col0 + (up1i-up0Left)/(up0Right-up0Left);
|
|
|
300 |
|
|
|
301 |
q1Rect.push_back(cv::Point2f(col, row));
|
|
|
302 |
q0Rect.push_back(cv::Point2f(col0i, row));
|
|
|
303 |
|
|
|
304 |
break;
|
|
|
305 |
}
|
|
|
306 |
}
|
|
|
307 |
}
|
|
|
308 |
}
|
|
|
309 |
|
70 |
jakw |
310 |
int nMatches = q0Rect.size();
|
|
|
311 |
|
|
|
312 |
if(nMatches < 1){
|
|
|
313 |
Q.resize(0);
|
|
|
314 |
color.resize(0);
|
|
|
315 |
|
|
|
316 |
return;
|
|
|
317 |
}
|
|
|
318 |
|
|
|
319 |
// Retrieve color information
|
|
|
320 |
color.resize(nMatches);
|
|
|
321 |
for(int i=0; i<nMatches; i++){
|
|
|
322 |
|
|
|
323 |
cv::Vec3b c0 = color0Rect.at<cv::Vec3b>(q0Rect[i][1], q0Rect[i][0]);
|
|
|
324 |
cv::Vec3b c1 = color1Rect.at<cv::Vec3b>(q1Rect[i][1], q1Rect[i][0]);
|
|
|
325 |
|
|
|
326 |
color[i] = 0.5*c0 + 0.5*c1;
|
|
|
327 |
}
|
|
|
328 |
|
|
|
329 |
// Triangulate points
|
|
|
330 |
cv::Mat QMatHomogenous, QMat;
|
|
|
331 |
cv::triangulatePoints(P0, P1, q0Rect, q1Rect, QMatHomogenous);
|
|
|
332 |
cvtools::convertMatFromHomogeneous(QMatHomogenous, QMat);
|
|
|
333 |
|
|
|
334 |
// Undo rectification
|
|
|
335 |
cv::Mat R0Inv;
|
|
|
336 |
cv::Mat(R0.t()).convertTo(R0Inv, CV_32F);
|
|
|
337 |
QMat = R0Inv*QMat;
|
|
|
338 |
|
|
|
339 |
cvtools::matToPoints3f(QMat, Q);
|
|
|
340 |
|
4 |
jakw |
341 |
}
|