Rev 27 | Go to most recent revision | Blame | Last modification | View Log | RSS feed
#include "CodecGrayCode.h"
#include <cmath>
#ifndef log2f
#define log2f(x) (log(x)/log(2.0))
#endif
using namespace std;
/*
* The purpose of this function is to convert an unsigned
* binary number to reflected binary Gray code.
*
* The operator >> is shift right. The operator ^ is exclusive or.
* Source: http://en.wikipedia.org/wiki/Gray_code
*/
static unsigned int binaryToGray(unsigned int num) {
return (num >> 1) ^ num;
}
/*
* From Wikipedia: http://en.wikipedia.org/wiki/Gray_code
* The purpose of this function is to convert a reflected binary
* Gray code number to a binary number.
*/
static unsigned grayToBinary(unsigned num, unsigned numBits)
{
for (unsigned shift = 1; shift < numBits; shift <<= 1){
num ^= num >> shift;
}
return num;
}
/*
* Function takes the decimal number
* Function takes the Nth bit (1 to 31)
* Return the value of Nth bit from decimal
* Source: http://icfun.blogspot.com/2009/04/get-n-th-bit-value-of-any-integer.html
*/
static int get_bit(int decimal, int N){
// Shifting the 1 for N-1 bits
int constant = 1 << (N-1);
// If the bit is set, return 1
if( decimal & constant ){
return 1;
}
// If the bit is not set, return 0
return 0;
}
static inline int powi(int num, unsigned int exponent){
// NOT EQUIVALENT TO pow()
if(exponent == 0)
return 1;
float res = num;
for(unsigned int i=0; i<exponent-1; i++)
res *= num;
return res;
}
// Algorithm
AlgorithmGrayCode::AlgorithmGrayCode(unsigned int _screenCols, unsigned int _screenRows, CodecDir _dir) : Algorithm(_screenCols, _screenRows, _dir){
// Number of horizontal encoding patterns
Nhorz = ceilf(log2f((float)screenCols));;
// Number of vertical encoding patterns
Nvert = ceilf(log2f((float)screenRows));;
// Set total pattern number
if(dir & CodecDirHorizontal)
this->N += Nhorz;
if(dir & CodecDirVertical)
this->N += Nvert;
if(dir & CodecDirHorizontal){
// Precompute horizontally encoding patterns
for(unsigned int p=0; p<Nhorz; p++){
cv::Mat patternP(1, screenCols, CV_8UC3);
// Loop through columns in first row
for(unsigned int j=0; j<screenCols; j++){
unsigned int jGray = binaryToGray(j);
// Amplitude of channels
float amp = get_bit(jGray, Nhorz-p);
patternP.at<cv::Vec3b>(0,j) = cv::Vec3b(255.0*amp,255.0*amp,255.0*amp);
}
patterns.push_back(patternP);
}
}
if(dir & CodecDirVertical){
// Precompute vertical encoding patterns
for(unsigned int p=0; p<Nvert; p++){
cv::Mat patternP(screenRows, 1, CV_8UC3);
// Loop through rows in first column
for(unsigned int i=0; i<screenRows; i++){
unsigned int iGray = binaryToGray(i);
// Amplitude of channels
float amp = get_bit(iGray, Nvert-p); // Nvert-p-1?
patternP.at<cv::Vec3b>(i,0) = cv::Vec3b(255.0*amp,255.0*amp,255.0*amp);
}
patterns.push_back(patternP);
}
}
}
cv::Mat AlgorithmGrayCode::getEncodingPattern(unsigned int depth){
return patterns[depth];
}
// Algorithm
AlgorithmGrayCode::AlgorithmGrayCode(CodecDir _dir, int _screenResX, int _screenResY) : Algorithm(_dir, _screenResX, _screenResY){
// Number of horizontal encoding patterns
Nhorz = ceilf(log2f((float)screenCols));;
// Number of vertical encoding patterns
Nvert = ceilf(log2f((float)screenRows));;
}
void AlgorithmGrayCode::getCorrespondences(const std::vector<cv::Mat>& frames0, const std::vector<cv::Mat>& frames1, std::vector<cv::Point2f>& q0, std::vector<cv::Point2f>& q1, std::vector<cv::Point3f>& color){
}