Subversion Repositories seema-scanner

Rev

Rev 50 | Rev 81 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jakw 1
#include "cvtools.h"
2
 
3
#ifdef _WIN32
4
#include <cstdint>
5
#endif
6
 
7
#include <stdio.h>
8
 
9
namespace cvtools{
10
 
49 jakw 11
// Lightly modified OpenCV function which accepts a line width argument
50 jakw 12
void drawChessboardCorners(cv::InputOutputArray _image, cv::Size patternSize, cv::InputArray _corners, bool patternWasFound, int line_width){
13
    cv::Mat corners = _corners.getMat();
49 jakw 14
    if( corners.empty() )
15
        return;
50 jakw 16
    cv::Mat image = _image.getMat(); CvMat c_image = _image.getMat();
49 jakw 17
    int nelems = corners.checkVector(2, CV_32F, true);
18
    CV_Assert(nelems >= 0);
19
    cvDrawChessboardCorners( &c_image, patternSize, (CvPoint2D32f*)corners.data,
20
                             nelems, patternWasFound, line_width);
21
}
22
 
50 jakw 23
void cvDrawChessboardCorners(CvArr* _image, CvSize pattern_size, CvPoint2D32f* corners, int count, int found, int line_width){
49 jakw 24
    const int shift = 0;
50 jakw 25
    const int radius = 12;
49 jakw 26
    const int r = radius*(1 << shift);
27
    int i;
28
    CvMat stub, *image;
29
    double scale = 1;
30
    int type, cn, line_type;
31
 
32
    image = cvGetMat( _image, &stub );
33
 
34
    type = CV_MAT_TYPE(image->type);
35
    cn = CV_MAT_CN(type);
36
    if( cn != 1 && cn != 3 && cn != 4 )
37
        CV_Error( CV_StsUnsupportedFormat, "Number of channels must be 1, 3 or 4" );
38
 
39
    switch( CV_MAT_DEPTH(image->type) )
40
    {
41
    case CV_8U:
42
        scale = 1;
43
        break;
44
    case CV_16U:
45
        scale = 256;
46
        break;
47
    case CV_32F:
48
        scale = 1./255;
49
        break;
50
    default:
51
        CV_Error( CV_StsUnsupportedFormat,
52
            "Only 8-bit, 16-bit or floating-point 32-bit images are supported" );
53
    }
54
 
55
    line_type = type == CV_8UC1 || type == CV_8UC3 ? CV_AA : 8;
56
 
57
    if( !found )
58
    {
59
        CvScalar color = {{0,0,255}};
60
        if( cn == 1 )
61
            color = cvScalarAll(200);
62
        color.val[0] *= scale;
63
        color.val[1] *= scale;
64
        color.val[2] *= scale;
65
        color.val[3] *= scale;
66
 
67
        for( i = 0; i < count; i++ )
68
        {
69
            CvPoint pt;
70
            pt.x = cvRound(corners[i].x*(1 << shift));
71
            pt.y = cvRound(corners[i].y*(1 << shift));
72
            cvLine( image, cvPoint( pt.x - r, pt.y - r ),
50 jakw 73
                    cvPoint( pt.x + r, pt.y + r ), color, line_width, line_type, shift );
49 jakw 74
            cvLine( image, cvPoint( pt.x - r, pt.y + r),
50 jakw 75
                    cvPoint( pt.x + r, pt.y - r), color, line_width, line_type, shift );
76
            cvCircle( image, pt, r+(1<<shift), color, line_width, line_type, shift );
49 jakw 77
        }
78
    }
79
    else
80
    {
81
        int x, y;
82
        CvPoint prev_pt = {0, 0};
83
        const int line_max = 7;
84
        static const CvScalar line_colors[line_max] =
85
        {
86
            {{0,0,255}},
87
            {{0,128,255}},
88
            {{0,200,200}},
89
            {{0,255,0}},
90
            {{200,200,0}},
91
            {{255,0,0}},
92
            {{255,0,255}}
93
        };
94
 
95
        for( y = 0, i = 0; y < pattern_size.height; y++ )
96
        {
97
            CvScalar color = line_colors[y % line_max];
98
            if( cn == 1 )
99
                color = cvScalarAll(200);
100
            color.val[0] *= scale;
101
            color.val[1] *= scale;
102
            color.val[2] *= scale;
103
            color.val[3] *= scale;
104
 
105
            for( x = 0; x < pattern_size.width; x++, i++ )
106
            {
107
                CvPoint pt;
108
                pt.x = cvRound(corners[i].x*(1 << shift));
109
                pt.y = cvRound(corners[i].y*(1 << shift));
110
 
111
                if( i != 0 )
112
                    cvLine( image, prev_pt, pt, color, 1, line_type, shift );
113
 
114
                cvLine( image, cvPoint(pt.x - r, pt.y - r),
50 jakw 115
                        cvPoint(pt.x + r, pt.y + r), color, line_width, line_type, shift );
49 jakw 116
                cvLine( image, cvPoint(pt.x - r, pt.y + r),
50 jakw 117
                        cvPoint(pt.x + r, pt.y - r), color, line_width, line_type, shift );
118
                cvCircle( image, pt, r+(1<<shift), color, line_width, line_type, shift );
49 jakw 119
                prev_pt = pt;
120
            }
121
        }
122
    }
123
}
124
 
74 jakw 125
// Returns the result of mod(mat(x,y), moduli) for each matrix element
126
cv::Mat modulo(const cv::Mat &mat, float n){
127
 
128
    cv::Mat ret(mat.rows, mat.cols, mat.type());
129
 
130
    for(int row=0; row<ret.rows; row++){
131
        for(int col=0; col<ret.cols; col++){
132
            float val = mat.at<float>(row, col);
133
            // note: std::fmod calculates the remainder, not arithmetic modulo
134
            ret.at<float>(row, col) = val - n * std::floor(val / n);
135
        }
136
    }
137
 
138
    return ret;
139
}
140
 
42 jakw 141
// Convert a 3xN matrix to a vector of Point3fs.
142
void matToPoints3f(const cv::Mat &mat, std::vector<cv::Point3f> &points){
143
 
144
    unsigned int nPoints = mat.cols;
145
    points.resize(nPoints);
146
 
147
    for(unsigned int i=0; i<nPoints; i++)
148
        points[i] = cv::Point3f(mat.at<float>(0, i), mat.at<float>(1, i), mat.at<float>(2, i));
149
}
150
 
151
// Convert a (Dim+1)xN matrix of homogenous points to a DimxN matrix of points in non-homogenous coordinates.
152
void convertMatFromHomogeneous(cv::Mat &src, cv::Mat &dst){
153
    unsigned int N = src.cols;
154
    unsigned int Dim = src.rows-1;
155
    dst.create(Dim, N, src.type());
156
    for(unsigned int i=0; i<N; i++){
157
        for(unsigned int j=0; j<Dim; j++)
158
            dst.at<float>(j,i) = src.at<float>(j,i)/src.at<float>(Dim,i);
159
    }
160
 
161
}
162
 
34 jakw 163
// Function to solve the hand-eye (or eye-in-hand) calibration problem.
164
// Finds [Omega | tau], to minimize ||[R_mark | t_mark][Omega | tau] - [Omega | tau][R | t]||^2
165
// Algorithm according to Tsai, Lenz, A new technique for fully autonomous and efficient 3d robotics hand-eye calibration
166
// DTU, 2014, Jakob Wilm
167
void handEyeCalibrationTsai(const std::vector<cv::Matx33f> R, const std::vector<cv::Vec3f> t, const std::vector<cv::Matx33f> R_mark, const std::vector<cv::Vec3f> t_mark, cv::Matx33f &Omega, cv::Vec3f &tau){
42 jakw 168
 
34 jakw 169
    int N = R.size();
170
    assert(N == R_mark.size());
171
    assert(N == t.size());
172
    assert(N == t_mark.size());
173
 
174
    // construct equations for rotation
175
    cv::Mat A(3*N, 3, CV_32F);
176
    cv::Mat b(3*N, 1, CV_32F);
177
    for(int i=0; i<N; i++){
178
        // angle axis representations
179
        cv::Vec3f rot;
180
        cv::Vec3f rot_mark;
181
        cv::Rodrigues(R[i], rot);
182
        cv::Rodrigues(R_mark[i], rot_mark);
183
 
184
        cv::Vec3f P = 2.0*sin(cv::norm(rot)/2.0)*cv::normalize(rot);
36 jakw 185
//std::cout << "P: " << std::endl << P << std::endl;
34 jakw 186
        cv::Vec3f P_mark = 2.0*sin(cv::norm(rot_mark)/2.0)*cv::normalize(rot_mark);
36 jakw 187
//std::cout << "P_mark: " << std::endl << P_mark << std::endl;
34 jakw 188
        cv::Vec3f sum = P+P_mark;
189
        cv::Mat crossProduct = (cv::Mat_<float>(3,3) << 0.0, -sum(2), sum(1), sum(2), 0.0, -sum(0), -sum(1), sum(0), 0.0);
36 jakw 190
//std::cout << "crossProduct: " << std::endl << crossProduct << std::endl;
34 jakw 191
        crossProduct.copyTo(A.rowRange(i*3, i*3+3));
192
 
193
        cv::Mat(P-P_mark).copyTo(b.rowRange(i*3, i*3+3));
194
    }
195
 
196
    // solve for rotation
36 jakw 197
    cv::Vec3f P_prime;
198
    cv::solve(A, b, P_prime, cv::DECOMP_SVD);
199
    cv::Vec3f P = 2.0*P_prime/(cv::sqrt(1.0 + cv::norm(P_prime)*cv::norm(P_prime)));
34 jakw 200
    float nP = cv::norm(P);
201
    cv::Mat crossProduct = (cv::Mat_<float>(3,3) << 0.0, -P(2), P(1), P(2), 0.0, -P(0), -P(1), P(0), 0.0);
202
    cv::Mat OmegaMat = (1.0-nP*nP/2.0)*cv::Mat::eye(3,3,CV_32F) + 0.5*(cv::Mat(P)*cv::Mat(P).t() + cv::sqrt(4.0 - nP*nP)*crossProduct);
203
    Omega = cv::Matx33f(OmegaMat);
204
 
205
    // construct equations for translation
206
    A.setTo(0.0);
207
    b.setTo(0.0);
208
    for(int i=0; i<N; i++){
209
 
36 jakw 210
        cv::Mat diff = cv::Mat(R_mark[i]) - cv::Mat::eye(3, 3, CV_32F);
34 jakw 211
        diff.copyTo(A.rowRange(i*3, i*3+3));
212
 
36 jakw 213
        cv::Mat diff_mark = cv::Mat(Omega*t[i] - t_mark[i]);
34 jakw 214
        diff_mark.copyTo(b.rowRange(i*3, i*3+3));
215
    }
216
 
217
    // solve for translation
36 jakw 218
    cv::solve(A, b, tau, cv::DECOMP_SVD);
34 jakw 219
}
220
 
221
// Function to fit two sets of corresponding pose data.
222
// Finds [Omega | tau], to minimize ||[R_mark | t_mark] - [Omega | tau][R | t]||^2
31 jakw 223
// Algorithm and notation according to Mili Shah, Comparing two sets of corresponding six degree of freedom data, CVIU 2011.
224
// DTU, 2013, Oline V. Olesen, Jakob Wilm
225
void fitSixDofData(const std::vector<cv::Matx33f> R, const std::vector<cv::Vec3f> t, const std::vector<cv::Matx33f> R_mark, const std::vector<cv::Vec3f> t_mark, cv::Matx33f &Omega, cv::Vec3f &tau){
34 jakw 226
 
31 jakw 227
    int N = R.size();
228
    assert(N == R_mark.size());
229
    assert(N == t.size());
230
    assert(N == t_mark.size());
231
 
232
    // Mean translations
233
    cv::Vec3f t_mean;
234
    cv::Vec3f t_mark_mean;
235
    for(int i=0; i<N; i++){
236
        t_mean += 1.0/N * t[i];
237
        t_mark_mean += 1.0/N * t_mark[i];
238
    }
239
 
240
    // Data with mean adjusted translations
241
    cv::Mat X_bar(3, 4*N, CV_32F);
242
    cv::Mat X_mark_bar(3, 4*N, CV_32F);
243
    for(int i=0; i<N; i++){
33 jakw 244
        cv::Mat(R[i]).copyTo(X_bar.colRange(i*4,i*4+3));
245
        cv::Mat(t[i] - t_mean).copyTo(X_bar.col(i*4+3));
246
        cv::Mat(R_mark[i]).copyTo(X_mark_bar.colRange(i*4,i*4+3));
247
        cv::Mat(t_mark[i] - t_mark_mean).copyTo(X_mark_bar.col(i*4+3));
31 jakw 248
    }
33 jakw 249
    //std::cout << X_bar << std::endl;
31 jakw 250
    // SVD
33 jakw 251
    cv::Mat W, U, VT;
31 jakw 252
    cv::SVDecomp(X_bar*X_mark_bar.t(), W, U, VT);
253
 
254
    cv::Matx33f D = cv::Matx33f::eye();
255
    if(cv::determinant(VT*U) < 0)
256
        D(3,3) = -1;
257
 
258
    // Best rotation
33 jakw 259
    Omega = cv::Matx33f(cv::Mat(VT.t()))*D*cv::Matx33f(cv::Mat(U.t()));
31 jakw 260
 
261
    // Best translation
262
    tau = t_mark_mean - Omega*t_mean;
263
 
264
}
265
 
1 jakw 266
// Forward distortion of points. The inverse of the undistortion in cv::initUndistortRectifyMap().
267
// Inspired by Pascal Thomet, http://code.opencv.org/issues/1387#note-11
268
// Convention for distortion parameters: http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
269
void initDistortMap(const cv::Matx33f cameraMatrix, const cv::Vec<float, 5> distCoeffs, const cv::Size size, cv::Mat &map1, cv::Mat &map2){
270
 
271
    float fx = cameraMatrix(0,0);
272
    float fy = cameraMatrix(1,1);
273
    float ux = cameraMatrix(0,2);
274
    float uy = cameraMatrix(1,2);
275
 
276
    float k1 = distCoeffs[0];
277
    float k2 = distCoeffs[1];
278
    float p1 = distCoeffs[2];
279
    float p2 = distCoeffs[3];
280
    float k3 = distCoeffs[4];
281
 
282
    map1.create(size, CV_32F);
283
    map2.create(size, CV_32F);
284
 
285
    for(int col = 0; col < size.width; col++){
286
        for(int row = 0; row < size.height; row++){
287
 
288
            // move origo to principal point and convert using focal length
289
            float x = (col-ux)/fx;
290
            float y = (row-uy)/fy;
291
 
292
            float xCorrected, yCorrected;
293
 
294
            //Step 1 : correct distortion
295
            float r2 = x*x + y*y;
296
            //radial
297
            xCorrected = x * (1. + k1*r2 + k2*r2*r2 + k3*r2*r2*r2);
298
            yCorrected = y * (1. + k1*r2 + k2*r2*r2 + k3*r2*r2*r2);
299
            //tangential
300
            xCorrected = xCorrected + (2.*p1*x*y + p2*(r2+2.*x*x));
301
            yCorrected = yCorrected + (p1*(r2+2.*y*y) + 2.*p2*x*y);
302
 
303
            //convert back to pixel coordinates
304
            float col_displaced = xCorrected * fx + ux;
305
            float row_displaced = yCorrected * fy + uy;
306
 
307
            // correct the vector in the opposite direction
308
            map1.at<float>(row,col) = col+(col-col_displaced);
309
            map2.at<float>(row,col) = row +(row-row_displaced);
310
        }
311
    }
312
}
313
 
314
// Downsample a texture which was created in virtual column/row space for a diamond pixel array projector
315
cv::Mat diamondDownsample(cv::Mat &pattern){
316
 
317
    cv::Mat pattern_diamond(pattern.rows,pattern.cols/2,CV_8UC3);
318
 
319
    for(unsigned int col = 0; col < pattern_diamond.cols; col++){
320
        for(unsigned int row = 0; row < pattern_diamond.rows; row++){
321
 
322
            pattern_diamond.at<cv::Vec3b>(row,col)=pattern.at<cv::Vec3b>(row,col*2+row%2);
323
        }
324
    }
325
 
326
    return pattern_diamond;
327
 
328
}
329
 
330
 
331
void mouseCallback(int evt, int x, int y, int flags, void* param){
332
    cv::Mat *im = (cv::Mat*) param;
333
    if (evt == CV_EVENT_LBUTTONDOWN) {
334
        if(im->type() == CV_8UC3){
335
            printf("%d %d: %d, %d, %d\n",
336
                   x, y,
337
                   (int)(*im).at<cv::Vec3b>(y, x)[0],
338
                    (int)(*im).at<cv::Vec3b>(y, x)[1],
339
                    (int)(*im).at<cv::Vec3b>(y, x)[2]);
340
        } else if (im->type() == CV_32F) {
341
            printf("%d %d: %f\n",
342
                   x, y,
343
                   im->at<float>(y, x));
344
        }
345
    }
346
}
347
 
348
void imshow(const char *windowName, cv::Mat im, unsigned int x, unsigned int y){
349
 
350
    // Imshow
351
    if(!cvGetWindowHandle(windowName)){
352
        int windowFlags = CV_GUI_EXPANDED | CV_WINDOW_KEEPRATIO;
353
        cv::namedWindow(windowName, windowFlags);
354
        cv::moveWindow(windowName, x, y);
355
    }
356
    cv::imshow(windowName, im);
357
}
358
 
359
void imagesc(const char *windowName, cv::Mat im){
360
 
361
    // Imshow with scaled image
362
 
363
 
364
}
365
 
366
cv::Mat histimage(cv::Mat histogram){
367
 
368
    cv::Mat histImage(512, 640, CV_8UC3, cv::Scalar(0));
369
 
370
    // Normalize the result to [ 2, histImage.rows-2 ]
371
    cv::normalize(histogram, histogram, 2, histImage.rows-2, cv::NORM_MINMAX, -1, cv::Mat());
372
 
373
    float bin_w = (float)histImage.cols/(float)histogram.rows;
374
 
375
    // Draw main histogram
376
    for(int i = 1; i < histogram.rows-10; i++){
377
        cv::line(histImage, cv::Point( bin_w*(i-1), histImage.rows - cvRound(histogram.at<float>(i-1)) ),
378
                 cv::Point( bin_w*(i), histImage.rows - cvRound(histogram.at<float>(i)) ),
379
                 cv::Scalar(255, 255, 255), 2, 4);
380
    }
381
 
382
    // Draw red max
383
    for(int i = histogram.rows-10; i < histogram.rows; i++){
384
        cv::line(histImage, cv::Point( bin_w*(i-1), histImage.rows - cvRound(histogram.at<float>(i-1)) ),
385
                 cv::Point( bin_w*(i), histImage.rows - cvRound(histogram.at<float>(i)) ),
386
                 cv::Scalar(0, 0, 255), 2, 4);
387
    }
388
 
389
    return histImage;
390
}
391
 
392
void hist(const char *windowName, cv::Mat histogram, unsigned int x, unsigned int y){
393
 
394
    // Display
395
    imshow(windowName, histimage(histogram), x, y);
396
    cv::Point(1,2);
397
}
398
 
399
 
400
void writeMat(cv::Mat const& mat, const char* filename, const char* varName, bool bgr2rgb){
401
    /*!
402
         *  \author Philip G. Lee <rocketman768@gmail.com>
403
         *  Write \b mat into \b filename
404
         *  in uncompressed .mat format (Level 5 MATLAB) for Matlab.
405
         *  The variable name in matlab will be \b varName. If
406
         *  \b bgr2rgb is true and there are 3 channels, swaps 1st and 3rd
407
         *  channels in the output. This is needed because OpenCV matrices
408
         *  are bgr, while Matlab is rgb. This has been tested to work with
409
         *  3-channel single-precision floating point matrices, and I hope
410
         *  it works on other types/channels, but not exactly sure.
411
         *  Documentation at <http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf>
412
         */
413
    int textLen = 116;
414
    char* text;
415
    int subsysOffsetLen = 8;
416
    char* subsysOffset;
417
    int verLen = 2;
418
    char* ver;
419
    char flags;
420
    int bytes;
421
    int padBytes;
422
    int bytesPerElement;
423
    int i,j,k,k2;
424
    bool doBgrSwap;
425
    char mxClass;
426
    int32_t miClass;
427
    uchar const* rowPtr;
428
    uint32_t tmp32;
429
    float tmp;
430
    FILE* fp;
431
 
432
    // Matlab constants.
433
    const uint16_t MI = 0x4d49; // Contains "MI" in ascii.
434
    const int32_t miINT8 = 1;
435
    const int32_t miUINT8 = 2;
436
    const int32_t miINT16 = 3;
437
    const int32_t miUINT16 = 4;
438
    const int32_t miINT32 = 5;
439
    const int32_t miUINT32 = 6;
440
    const int32_t miSINGLE = 7;
441
    const int32_t miDOUBLE = 9;
442
    const int32_t miMATRIX = 14;
443
    const char mxDOUBLE_CLASS = 6;
444
    const char mxSINGLE_CLASS = 7;
445
    const char mxINT8_CLASS = 8;
446
    const char mxUINT8_CLASS = 9;
447
    const char mxINT16_CLASS = 10;
448
    const char mxUINT16_CLASS = 11;
449
    const char mxINT32_CLASS = 12;
450
    const char mxUINT32_CLASS = 13;
451
    const uint64_t zero = 0; // Used for padding.
452
 
453
    fp = fopen( filename, "wb" );
454
 
455
    if( fp == 0 )
456
        return;
457
 
458
    const int rows = mat.rows;
459
    const int cols = mat.cols;
460
    const int chans = mat.channels();
461
 
462
    doBgrSwap = (chans==3) && bgr2rgb;
463
 
464
    // I hope this mapping is right :-/
465
    switch( mat.depth() ){
466
    case CV_8U:
467
        mxClass = mxUINT8_CLASS;
468
        miClass = miUINT8;
469
        bytesPerElement = 1;
470
        break;
471
    case CV_8S:
472
        mxClass = mxINT8_CLASS;
473
        miClass = miINT8;
474
        bytesPerElement = 1;
475
        break;
476
    case CV_16U:
477
        mxClass = mxUINT16_CLASS;
478
        miClass = miUINT16;
479
        bytesPerElement = 2;
480
        break;
481
    case CV_16S:
482
        mxClass = mxINT16_CLASS;
483
        miClass = miINT16;
484
        bytesPerElement = 2;
485
        break;
486
    case CV_32S:
487
        mxClass = mxINT32_CLASS;
488
        miClass = miINT32;
489
        bytesPerElement = 4;
490
        break;
491
    case CV_32F:
492
        mxClass = mxSINGLE_CLASS;
493
        miClass = miSINGLE;
494
        bytesPerElement = 4;
495
        break;
496
    case CV_64F:
497
        mxClass = mxDOUBLE_CLASS;
498
        miClass = miDOUBLE;
499
        bytesPerElement = 8;
500
        break;
501
    default:
502
        return;
503
    }
504
 
505
    //==================Mat-file header (128 bytes, page 1-5)==================
506
    text = new char[textLen]; // Human-readable text.
507
    memset( text, ' ', textLen );
508
    text[textLen-1] = '\0';
509
    const char* t = "MATLAB 5.0 MAT-file, Platform: PCWIN";
510
    memcpy( text, t, strlen(t) );
511
 
512
    subsysOffset = new char[subsysOffsetLen]; // Zeros for us.
513
    memset( subsysOffset, 0x00, subsysOffsetLen );
514
    ver = new char[verLen];
515
    ver[0] = 0x00;
516
    ver[1] = 0x01;
517
 
518
    fwrite( text, 1, textLen, fp );
519
    fwrite( subsysOffset, 1, subsysOffsetLen, fp );
520
    fwrite( ver, 1, verLen, fp );
521
    // Endian indicator. MI will show up as "MI" on big-endian
522
    // systems and "IM" on little-endian systems.
523
    fwrite( &MI, 2, 1, fp );
524
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
525
 
526
    //===================Data element tag (8 bytes, page 1-8)==================
527
    bytes = 16 + 24 + (8 + strlen(varName) + (8-(strlen(varName)%8))%8)
528
            + (8 + rows*cols*chans*bytesPerElement);
529
    fwrite( &miMATRIX, 4, 1, fp ); // Data type.
530
    fwrite( &bytes, 4, 1, fp); // Data size in bytes.
531
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
532
 
533
    //====================Array flags (16 bytes, page 1-15)====================
534
    bytes = 8;
535
    fwrite( &miUINT32, 4, 1, fp );
536
    fwrite( &bytes, 4, 1, fp );
537
    flags = 0x00; // Complex, logical, and global flags all off.
538
 
539
    tmp32 = 0;
540
    tmp32 = (flags << 8 ) | (mxClass);
541
    fwrite( &tmp32, 4, 1, fp );
542
 
543
    fwrite( &zero, 4, 1, fp ); // Padding to 64-bit boundary.
544
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
545
 
546
    //===============Dimensions subelement (24 bytes, page 1-17)===============
547
    bytes = 12;
548
    fwrite( &miINT32, 4, 1, fp );
549
    fwrite( &bytes, 4, 1, fp );
550
 
551
    fwrite( &rows, 4, 1, fp );
552
    fwrite( &cols, 4, 1, fp );
553
    fwrite( &chans, 4, 1, fp );
554
    fwrite( &zero, 4, 1, fp ); // Padding to 64-bit boundary.
555
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
556
 
557
    //==Array name (8 + strlen(varName) + (8-(strlen(varName)%8))%8 bytes, page 1-17)==
558
    bytes = strlen(varName);
559
 
560
    fwrite( &miINT8, 4, 1, fp );
561
    fwrite( &bytes, 4, 1, fp );
562
    fwrite( varName, 1, bytes, fp );
563
 
564
    // Pad to nearest 64-bit boundary.
565
    padBytes = (8-(bytes%8))%8;
566
    fwrite( &zero, 1, padBytes, fp );
567
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
568
 
569
    //====Matrix data (rows*cols*chans*bytesPerElement+8 bytes, page 1-20)=====
570
    bytes = rows*cols*chans*bytesPerElement;
571
    fwrite( &miClass, 4, 1, fp );
572
    fwrite( &bytes, 4, 1, fp );
573
 
574
    for( k = 0; k < chans; ++k )
575
    {
576
        if( doBgrSwap )
577
        {
578
            k2 = (k==0)? 2 : ((k==2)? 0 : 1);
579
        }
580
        else
581
            k2 = k;
582
 
583
        for( j = 0; j < cols; ++j )
584
        {
585
            for( i = 0; i < rows; ++i )
586
            {
587
                rowPtr = mat.data + mat.step*i;
588
                fwrite( rowPtr + (chans*j + k2)*bytesPerElement, bytesPerElement, 1, fp );
589
            }
590
        }
591
    }
592
 
593
    // Pad to 64-bit boundary.
594
    padBytes = (8-(bytes%8))%8;
595
    fwrite( &zero, 1, padBytes, fp );
596
    //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
597
 
598
    fclose(fp);
599
    delete[] text;
600
    delete[] subsysOffset;
601
    delete[] ver;
602
}
603
 
604
 
605
 
606
 
607
 
608
}