Rev 34 | Rev 49 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | RSS feed
#include "cvtools.h"
#ifdef _WIN32
#include <cstdint>
#endif
#include <stdio.h>
namespace cvtools{
// Function to solve the hand-eye (or eye-in-hand) calibration problem.
// Finds [Omega | tau], to minimize ||[R_mark | t_mark][Omega | tau] - [Omega | tau][R | t]||^2
// Algorithm according to Tsai, Lenz, A new technique for fully autonomous and efficient 3d robotics hand-eye calibration
// DTU, 2014, Jakob Wilm
void handEyeCalibrationTsai(const std::vector<cv::Matx33f> R, const std::vector<cv::Vec3f> t, const std::vector<cv::Matx33f> R_mark, const std::vector<cv::Vec3f> t_mark, cv::Matx33f &Omega, cv::Vec3f &tau){
// NOT DEBUGGED!
int N = R.size();
assert(N == R_mark.size());
assert(N == t.size());
assert(N == t_mark.size());
// construct equations for rotation
cv::Mat A(3*N, 3, CV_32F);
cv::Mat b(3*N, 1, CV_32F);
for(int i=0; i<N; i++){
// angle axis representations
cv::Vec3f rot;
cv::Vec3f rot_mark;
cv::Rodrigues(R[i], rot);
cv::Rodrigues(R_mark[i], rot_mark);
cv::Vec3f P = 2.0*sin(cv::norm(rot)/2.0)*cv::normalize(rot);
//std::cout << "P: " << std::endl << P << std::endl;
cv::Vec3f P_mark = 2.0*sin(cv::norm(rot_mark)/2.0)*cv::normalize(rot_mark);
//std::cout << "P_mark: " << std::endl << P_mark << std::endl;
cv::Vec3f sum = P+P_mark;
cv::Mat crossProduct = (cv::Mat_<float>(3,3) << 0.0, -sum(2), sum(1), sum(2), 0.0, -sum(0), -sum(1), sum(0), 0.0);
//std::cout << "crossProduct: " << std::endl << crossProduct << std::endl;
crossProduct.copyTo(A.rowRange(i*3, i*3+3));
cv::Mat(P-P_mark).copyTo(b.rowRange(i*3, i*3+3));
}
// solve for rotation
cv::Vec3f P_prime;
cv::solve(A, b, P_prime, cv::DECOMP_SVD);
cv::Vec3f P = 2.0*P_prime/(cv::sqrt(1.0 + cv::norm(P_prime)*cv::norm(P_prime)));
float nP = cv::norm(P);
cv::Mat crossProduct = (cv::Mat_<float>(3,3) << 0.0, -P(2), P(1), P(2), 0.0, -P(0), -P(1), P(0), 0.0);
cv::Mat OmegaMat = (1.0-nP*nP/2.0)*cv::Mat::eye(3,3,CV_32F) + 0.5*(cv::Mat(P)*cv::Mat(P).t() + cv::sqrt(4.0 - nP*nP)*crossProduct);
Omega = cv::Matx33f(OmegaMat);
// construct equations for translation
A.setTo(0.0);
b.setTo(0.0);
for(int i=0; i<N; i++){
cv::Mat diff = cv::Mat(R_mark[i]) - cv::Mat::eye(3, 3, CV_32F);
diff.copyTo(A.rowRange(i*3, i*3+3));
cv::Mat diff_mark = cv::Mat(Omega*t[i] - t_mark[i]);
diff_mark.copyTo(b.rowRange(i*3, i*3+3));
}
// solve for translation
cv::solve(A, b, tau, cv::DECOMP_SVD);
}
// Function to fit two sets of corresponding pose data.
// Finds [Omega | tau], to minimize ||[R_mark | t_mark] - [Omega | tau][R | t]||^2
// Algorithm and notation according to Mili Shah, Comparing two sets of corresponding six degree of freedom data, CVIU 2011.
// DTU, 2013, Oline V. Olesen, Jakob Wilm
void fitSixDofData(const std::vector<cv::Matx33f> R, const std::vector<cv::Vec3f> t, const std::vector<cv::Matx33f> R_mark, const std::vector<cv::Vec3f> t_mark, cv::Matx33f &Omega, cv::Vec3f &tau){
int N = R.size();
assert(N == R_mark.size());
assert(N == t.size());
assert(N == t_mark.size());
// Mean translations
cv::Vec3f t_mean;
cv::Vec3f t_mark_mean;
for(int i=0; i<N; i++){
t_mean += 1.0/N * t[i];
t_mark_mean += 1.0/N * t_mark[i];
}
// Data with mean adjusted translations
cv::Mat X_bar(3, 4*N, CV_32F);
cv::Mat X_mark_bar(3, 4*N, CV_32F);
for(int i=0; i<N; i++){
cv::Mat(R[i]).copyTo(X_bar.colRange(i*4,i*4+3));
cv::Mat(t[i] - t_mean).copyTo(X_bar.col(i*4+3));
cv::Mat(R_mark[i]).copyTo(X_mark_bar.colRange(i*4,i*4+3));
cv::Mat(t_mark[i] - t_mark_mean).copyTo(X_mark_bar.col(i*4+3));
}
//std::cout << X_bar << std::endl;
// SVD
cv::Mat W, U, VT;
cv::SVDecomp(X_bar*X_mark_bar.t(), W, U, VT);
cv::Matx33f D = cv::Matx33f::eye();
if(cv::determinant(VT*U) < 0)
D(3,3) = -1;
// Best rotation
Omega = cv::Matx33f(cv::Mat(VT.t()))*D*cv::Matx33f(cv::Mat(U.t()));
// Best translation
tau = t_mark_mean - Omega*t_mean;
}
// Forward distortion of points. The inverse of the undistortion in cv::initUndistortRectifyMap().
// Inspired by Pascal Thomet, http://code.opencv.org/issues/1387#note-11
// Convention for distortion parameters: http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/parameters.html
void initDistortMap(const cv::Matx33f cameraMatrix, const cv::Vec<float, 5> distCoeffs, const cv::Size size, cv::Mat &map1, cv::Mat &map2){
float fx = cameraMatrix(0,0);
float fy = cameraMatrix(1,1);
float ux = cameraMatrix(0,2);
float uy = cameraMatrix(1,2);
float k1 = distCoeffs[0];
float k2 = distCoeffs[1];
float p1 = distCoeffs[2];
float p2 = distCoeffs[3];
float k3 = distCoeffs[4];
map1.create(size, CV_32F);
map2.create(size, CV_32F);
for(int col = 0; col < size.width; col++){
for(int row = 0; row < size.height; row++){
// move origo to principal point and convert using focal length
float x = (col-ux)/fx;
float y = (row-uy)/fy;
float xCorrected, yCorrected;
//Step 1 : correct distortion
float r2 = x*x + y*y;
//radial
xCorrected = x * (1. + k1*r2 + k2*r2*r2 + k3*r2*r2*r2);
yCorrected = y * (1. + k1*r2 + k2*r2*r2 + k3*r2*r2*r2);
//tangential
xCorrected = xCorrected + (2.*p1*x*y + p2*(r2+2.*x*x));
yCorrected = yCorrected + (p1*(r2+2.*y*y) + 2.*p2*x*y);
//convert back to pixel coordinates
float col_displaced = xCorrected * fx + ux;
float row_displaced = yCorrected * fy + uy;
// correct the vector in the opposite direction
map1.at<float>(row,col) = col+(col-col_displaced);
map2.at<float>(row,col) = row +(row-row_displaced);
}
}
}
// Downsample a texture which was created in virtual column/row space for a diamond pixel array projector
cv::Mat diamondDownsample(cv::Mat &pattern){
cv::Mat pattern_diamond(pattern.rows,pattern.cols/2,CV_8UC3);
for(unsigned int col = 0; col < pattern_diamond.cols; col++){
for(unsigned int row = 0; row < pattern_diamond.rows; row++){
pattern_diamond.at<cv::Vec3b>(row,col)=pattern.at<cv::Vec3b>(row,col*2+row%2);
}
}
return pattern_diamond;
}
void mouseCallback(int evt, int x, int y, int flags, void* param){
cv::Mat *im = (cv::Mat*) param;
if (evt == CV_EVENT_LBUTTONDOWN) {
if(im->type() == CV_8UC3){
printf("%d %d: %d, %d, %d\n",
x, y,
(int)(*im).at<cv::Vec3b>(y, x)[0],
(int)(*im).at<cv::Vec3b>(y, x)[1],
(int)(*im).at<cv::Vec3b>(y, x)[2]);
} else if (im->type() == CV_32F) {
printf("%d %d: %f\n",
x, y,
im->at<float>(y, x));
}
}
}
void imshow(const char *windowName, cv::Mat im, unsigned int x, unsigned int y){
// Imshow
if(!cvGetWindowHandle(windowName)){
int windowFlags = CV_GUI_EXPANDED | CV_WINDOW_KEEPRATIO;
cv::namedWindow(windowName, windowFlags);
cv::moveWindow(windowName, x, y);
}
cv::imshow(windowName, im);
}
void imagesc(const char *windowName, cv::Mat im){
// Imshow with scaled image
}
cv::Mat histimage(cv::Mat histogram){
cv::Mat histImage(512, 640, CV_8UC3, cv::Scalar(0));
// Normalize the result to [ 2, histImage.rows-2 ]
cv::normalize(histogram, histogram, 2, histImage.rows-2, cv::NORM_MINMAX, -1, cv::Mat());
float bin_w = (float)histImage.cols/(float)histogram.rows;
// Draw main histogram
for(int i = 1; i < histogram.rows-10; i++){
cv::line(histImage, cv::Point( bin_w*(i-1), histImage.rows - cvRound(histogram.at<float>(i-1)) ),
cv::Point( bin_w*(i), histImage.rows - cvRound(histogram.at<float>(i)) ),
cv::Scalar(255, 255, 255), 2, 4);
}
// Draw red max
for(int i = histogram.rows-10; i < histogram.rows; i++){
cv::line(histImage, cv::Point( bin_w*(i-1), histImage.rows - cvRound(histogram.at<float>(i-1)) ),
cv::Point( bin_w*(i), histImage.rows - cvRound(histogram.at<float>(i)) ),
cv::Scalar(0, 0, 255), 2, 4);
}
return histImage;
}
void hist(const char *windowName, cv::Mat histogram, unsigned int x, unsigned int y){
// Display
imshow(windowName, histimage(histogram), x, y);
cv::Point(1,2);
}
void writeMat(cv::Mat const& mat, const char* filename, const char* varName, bool bgr2rgb){
/*!
* \author Philip G. Lee <rocketman768@gmail.com>
* Write \b mat into \b filename
* in uncompressed .mat format (Level 5 MATLAB) for Matlab.
* The variable name in matlab will be \b varName. If
* \b bgr2rgb is true and there are 3 channels, swaps 1st and 3rd
* channels in the output. This is needed because OpenCV matrices
* are bgr, while Matlab is rgb. This has been tested to work with
* 3-channel single-precision floating point matrices, and I hope
* it works on other types/channels, but not exactly sure.
* Documentation at <http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf>
*/
int textLen = 116;
char* text;
int subsysOffsetLen = 8;
char* subsysOffset;
int verLen = 2;
char* ver;
char flags;
int bytes;
int padBytes;
int bytesPerElement;
int i,j,k,k2;
bool doBgrSwap;
char mxClass;
int32_t miClass;
uchar const* rowPtr;
uint32_t tmp32;
float tmp;
FILE* fp;
// Matlab constants.
const uint16_t MI = 0x4d49; // Contains "MI" in ascii.
const int32_t miINT8 = 1;
const int32_t miUINT8 = 2;
const int32_t miINT16 = 3;
const int32_t miUINT16 = 4;
const int32_t miINT32 = 5;
const int32_t miUINT32 = 6;
const int32_t miSINGLE = 7;
const int32_t miDOUBLE = 9;
const int32_t miMATRIX = 14;
const char mxDOUBLE_CLASS = 6;
const char mxSINGLE_CLASS = 7;
const char mxINT8_CLASS = 8;
const char mxUINT8_CLASS = 9;
const char mxINT16_CLASS = 10;
const char mxUINT16_CLASS = 11;
const char mxINT32_CLASS = 12;
const char mxUINT32_CLASS = 13;
const uint64_t zero = 0; // Used for padding.
fp = fopen( filename, "wb" );
if( fp == 0 )
return;
const int rows = mat.rows;
const int cols = mat.cols;
const int chans = mat.channels();
doBgrSwap = (chans==3) && bgr2rgb;
// I hope this mapping is right :-/
switch( mat.depth() ){
case CV_8U:
mxClass = mxUINT8_CLASS;
miClass = miUINT8;
bytesPerElement = 1;
break;
case CV_8S:
mxClass = mxINT8_CLASS;
miClass = miINT8;
bytesPerElement = 1;
break;
case CV_16U:
mxClass = mxUINT16_CLASS;
miClass = miUINT16;
bytesPerElement = 2;
break;
case CV_16S:
mxClass = mxINT16_CLASS;
miClass = miINT16;
bytesPerElement = 2;
break;
case CV_32S:
mxClass = mxINT32_CLASS;
miClass = miINT32;
bytesPerElement = 4;
break;
case CV_32F:
mxClass = mxSINGLE_CLASS;
miClass = miSINGLE;
bytesPerElement = 4;
break;
case CV_64F:
mxClass = mxDOUBLE_CLASS;
miClass = miDOUBLE;
bytesPerElement = 8;
break;
default:
return;
}
//==================Mat-file header (128 bytes, page 1-5)==================
text = new char[textLen]; // Human-readable text.
memset( text, ' ', textLen );
text[textLen-1] = '\0';
const char* t = "MATLAB 5.0 MAT-file, Platform: PCWIN";
memcpy( text, t, strlen(t) );
subsysOffset = new char[subsysOffsetLen]; // Zeros for us.
memset( subsysOffset, 0x00, subsysOffsetLen );
ver = new char[verLen];
ver[0] = 0x00;
ver[1] = 0x01;
fwrite( text, 1, textLen, fp );
fwrite( subsysOffset, 1, subsysOffsetLen, fp );
fwrite( ver, 1, verLen, fp );
// Endian indicator. MI will show up as "MI" on big-endian
// systems and "IM" on little-endian systems.
fwrite( &MI, 2, 1, fp );
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//===================Data element tag (8 bytes, page 1-8)==================
bytes = 16 + 24 + (8 + strlen(varName) + (8-(strlen(varName)%8))%8)
+ (8 + rows*cols*chans*bytesPerElement);
fwrite( &miMATRIX, 4, 1, fp ); // Data type.
fwrite( &bytes, 4, 1, fp); // Data size in bytes.
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//====================Array flags (16 bytes, page 1-15)====================
bytes = 8;
fwrite( &miUINT32, 4, 1, fp );
fwrite( &bytes, 4, 1, fp );
flags = 0x00; // Complex, logical, and global flags all off.
tmp32 = 0;
tmp32 = (flags << 8 ) | (mxClass);
fwrite( &tmp32, 4, 1, fp );
fwrite( &zero, 4, 1, fp ); // Padding to 64-bit boundary.
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//===============Dimensions subelement (24 bytes, page 1-17)===============
bytes = 12;
fwrite( &miINT32, 4, 1, fp );
fwrite( &bytes, 4, 1, fp );
fwrite( &rows, 4, 1, fp );
fwrite( &cols, 4, 1, fp );
fwrite( &chans, 4, 1, fp );
fwrite( &zero, 4, 1, fp ); // Padding to 64-bit boundary.
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//==Array name (8 + strlen(varName) + (8-(strlen(varName)%8))%8 bytes, page 1-17)==
bytes = strlen(varName);
fwrite( &miINT8, 4, 1, fp );
fwrite( &bytes, 4, 1, fp );
fwrite( varName, 1, bytes, fp );
// Pad to nearest 64-bit boundary.
padBytes = (8-(bytes%8))%8;
fwrite( &zero, 1, padBytes, fp );
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
//====Matrix data (rows*cols*chans*bytesPerElement+8 bytes, page 1-20)=====
bytes = rows*cols*chans*bytesPerElement;
fwrite( &miClass, 4, 1, fp );
fwrite( &bytes, 4, 1, fp );
for( k = 0; k < chans; ++k )
{
if( doBgrSwap )
{
k2 = (k==0)? 2 : ((k==2)? 0 : 1);
}
else
k2 = k;
for( j = 0; j < cols; ++j )
{
for( i = 0; i < rows; ++i )
{
rowPtr = mat.data + mat.step*i;
fwrite( rowPtr + (chans*j + k2)*bytesPerElement, bytesPerElement, 1, fp );
}
}
}
// Pad to 64-bit boundary.
padBytes = (8-(bytes%8))%8;
fwrite( &zero, 1, padBytes, fp );
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
fclose(fp);
delete[] text;
delete[] subsysOffset;
delete[] ver;
}
}